Minerals

now browsing by category

 

Ferritin and Iron

What is Ferritin?

Ferritin is an intracellular (inside the cell) protein, in the shape of a hollow sphere. Ferritin stores iron by allowing entry of iron as ferric hydroxide phosphate complexes, and when the body needs iron, releases it as required.
Ferritin is produced by almost every living organism, from bacteria to plants, animals and humans.
In humans, ferritin is a buffer against iron deficiency and iron overload, and is found in most tissues as a cytosolic protein, which means it is inside the cytoplasm, the fluid inside each cell between the outer shell wall and the nucleus (The nucleus contains our DNA).
However, small amounts of ferritin are secreted into the serum (blood) where it works as a carrier of iron.
Plasma ferritin (in the blood) is also an indirect marker of the total amount of iron stored in the body. Serum ferritin levels are used to determine iron deficiency (anaemia) or iron overload.
Ferritin keeps iron in a soluble, non-toxic form. Free ferritin (not combined with iron) is called apoferritin.
Iron is the central atom of haemoglobin, which gives blood it’s red colour. 75% of the body’s iron is stored in haemoglobin, 10 to 20% in the protein ferritin, and the rest in the protein transferrin (the iron transport protein). Small amounts are found in myoglobin, cytochromes, as unbound serum iron and in body tissues.
Excess iron is usually stored in the Liver, Spleen and Bone Marrow, but also in the Pancreas, Joints, Skin, Pituitary, Adrenals, Thyroid, Heart and other organs.
The haemoglobin molecule is a very large molecule, almost identical to the Chlorophyll molecule in plants. Chlorophyll has a central atom of Magnesium, giving grass the green colour. Haemoglobin has Iron as the central atom, giving blood the red colour.
Chlorophyll is commonly best known for “cleansing of the blood”. Best sources are green leafy vegetables and wheatgrass.

Why do we need Iron?

If we have too little iron, we cannot make enough red blood cells, reducing our ability to carry oxygen to all parts of the body.
If we have too much iron, it can damage organs and contribute to cancer, heart disease, the entire cardiovascular system, especially the endothelial cells (the inside lining of all blood vessels), the kidneys and the liver.
Red blood cells are made in the bone marrow, and have a lifespan of around 4 months, when they die (the process called Necrosis).
The body makes around 200 billion new red blood cells every day, along with around 10 billion white cells and about 400 billion platelets every day, and around the same amount die every day.
Dead red blood cells are then broken down by Macrophages (special white blood cells) in the spleen. Some are disposed of in the digestive tract (which makes our poo brown) and parts of other cells are re-used. Haemoglobin is further broken down to salvage the iron, and excess iron is then stored in the liver.
Too much iron in the liver can cause Cirrhosis (Scar tissue replacing healthy cells).
We can have too much iron in some cases because the body does not know how to get rid of excess iron, it only knows how absorb it and to store it (using the transferrin protein).


Healthy red blood cells.

As red blood cells approach death, or are infected with a parasite or bacteria, or have a genetic defect, or are cancerous, the shape, size, smoothness and colour may be different.

How is Iron absorbed?

Iron in food is processed in the high-acid stomach, where it is changed into a form that allows it to be absorbed.
Absorption takes place mainly in the duodenum (part of the small intestine) and also to a lesser extent near the end of the small intestinal tract.
After absorption, iron is transported by the transferrin protein. A healthy body has the ability to absorb more iron when it is required, and absorb less when it is not required.

Haemoglobin, Hemoglobin or Hbg

Haemoglobin is a protein contained in red blood cells.
The job of haemoglobin is to carry oxygen from the lungs to all of the tissue in the body, then return carbon dioxide back to the lungs.
Haemoglobin is composed of four globulin chains (protein molecules) which are connected together, and in adults, haemoglobin contains two alpha-globulin chains and two beta-globulin chains.
In foetuses and infants, haemoglobin contains two alpha chains and two gamma chains, and during growth to an adult, gamma chains are slowly removed, replaced by beta chains to form adult haemoglobin.
Every globulin chain contains the heme molecule as the central structure, and iron is embedded in the heme molecule, essential for the transport of oxygen and carbon dioxide.
Haemoglobin is also essential to help maintain the shape of every red blood cells, which resemble a donut with a dished centre rather than a hole. Any abnormal shape can cause poor flow through blood vessels.

Anaemia, Anemia

Anaemia is a condition where we do not have enough haemoglobin, which is usually, but not always, related to iron deficiency. It can be related to blood loss, from donating blood, from heavy menstrual bleeding, internal bleeding, blood loss from an injury, or insufficient iron in the diet (such as vegans or vegetarians).
IDA (Iron Deficiency Anaemia)
In most cases of anaemia, a blood test will reveal low haemoglobin and low ferritin, a result of iron deficiency, and the doctor will normally recommend iron supplementation or dietary changes or both.
ACD (Anaemia of Chronic Disease)
The body has a safety mechanism against harmful invaders such as cancer or bacteria. When sensing an invader, the body will move all iron it can from red blood cells back to ferritin, because all invaders need iron to thrive, and so does cancer. The body will leave just enough iron in haemoglobin for the cells to survive, but not enough to feed the invader.
We must NEVER take extra iron in cases of Chronic Disease, as we are only feeding the invader and doing more harm to our body.
ACD can be diagnosed by blood tests where we have low haemoglobin, but high ferritin. A C-Reactive Protein test (indicator of inflammation) is advised as well as ferritin if ACD is suspected.
When the disease clears up, the body will automatically return iron levels to normal.
Many doctors do not order ferritin tests when iron is low, resulting in the patient taking iron supplements which can cause damage or even death, so an accurate diagnosis of IDA or ACD is essential.
In some cases, IDA and ACD can occur at the same time, making diagnosis more difficult. One traditional test is Bone Marrow Aspiration with Iron Staining, but the Serum Transferrin Receptor test can help differentiate between IDA and ACD.
The Serum Transferrin Receptor test is significantly less affected by inflammation than the Serum Ferritin test. Results can be high in IDA and usually low in ACD, and the ratio of Serum Transferrin Receptor to the logarithim of Serum Ferritin Concentration is more helpful to distinguish ACD from IDA than is either individual test.
Kidney Damage
If the patient has any kidney damage (sometimes as a result of high iron) then it is possible to have high iron in the body tissues, while regular iron and ferritin tests results are normal or even low. In these cases, a specialist should supervise all testing.

Blood Tests

Normally, the doctor will organise a “Ferritin Study”.
This includes the following tests:

  • Serum Iron – how much iron is circulating in the blood, but this varies considerably and does not always mean a lot without also looking at the TIBC test below.
  • Serum Transferrin – or TIBC (Total Iron Binding Capacity) or Transferrin Saturation. Iron is bound to transferrin (which is produced by the liver), and TIBC is a direct measure of transferrin. Iron overload is indicated with levels over 55% for males and 50% for females. Fasting is preferred for accuracy. Note that inflammation causes reduced transferrin levels
  • Serum Ferritin – Indicates body iron stores. Typical lab results: Normal range 15 to 350 ug/L for men (some labs say up to 500ug/L), 15 – 300 ug/L for women, and varies depending on the lab and the method used, however LeanMachine says that these upper limits are way too high, and that anything over 80 ug/L indicates a possible iron overload condition, and anything below 20 ug/L indicates a possible iron deficiency. A healthy range is 20 to 80 ug/L, and the desirable range is 40 to 60 ug/L, but note that levels over 80 ug/L may be also be caused by liver disease, inflammation or cancer
  • Soluble Transferrin Receptors – Transferrin receptors present on cell surfaces are responsible for internalization of transferrin resulting in intracellular release or iron. With low iron stores, expression of transferrin receptors increases, so the level of soluble transferrin receptors inversely reflects iron stores, and is unaffected by any inflammation, however high soluble transferrin receptors may also mean haemolysis (premature red cell death)
  • A complete blood examination is also required to check Haemoglobin and other factors related to red blood cells, also liver and kidney function. Typical haemoglobin blood results 130g/L to 170g/L for adult males, 120g/L to 150g/L for adult females. For more info on these tests, see my article Blood Tests – How to read the results
  • Further tests may include a Liver Biopsy, SQUID (Superconducting Quantum Interference Device), or MRI (Magnetic Resonance Imaging), but these are generally not required except for extreme cases

Note that these are Australian tests. In the USA, the results are in ng/ml (nanograms per millilitre), which is exactly the same as ug/L (micrograms per litre), with upper and lower numbers both divided by 1000, giving the same numerical result.

Types of dietary Iron

There are two main types of dietary iron, heme iron found in meat and other animal products, and non-heme iron found in plant products.
Generally, heme iron is better absorbed than non-heme iron, leaving vegans more at risk for iron insufficiency, however heme iron is also more dangerous for the body in high levels.
A healthy body self-regulates iron levels, by absorbing more iron when we need it, and absorbing less iron when we do not need it, but sometimes this regulation is upset or overloaded.

Factors affecting ferritin/iron levels

Menopausal women often (but not always) have low iron, especially if periods are heavy, while post-menopausal women usually have normal iron.
Pregnancy increases iron requirements, as the body needs to make around 30% more blood to support the developing foetus, requiring 30% more iron. The body will use the body’s stored iron, but if stored iron is insufficient, anaemia will occur. All pregnant women should get their iron and haemoglobin tests done at each trimester, especially if diet or other factors place them at risk.
Blood donors will often have low iron. Red Cross blood donation centres always test haemoglobin levels, and if too low (or even too high), that person cannot donate blood.
For an adult male, the normal range is 125g/L to 185g/L
For an adult woman, the normal range is 115g/L to 165g/L.
For donations of whole blood for males, the acceptable range is 120 to 165g/L for women, and 130 to 185g/L for men.
For donations of plasma and platelets, the acceptable range is 115 to 165g/L for women, and 125 to 185g/L for men.
If below 130 (male) or 120 (female), that person should build up their iron reserves and seek medical advice.
Bleeding in the GI (Gastro-Intestinal) tract can cause low iron, as in any other form of blood loss.
Bleeding because of haemorrhoids or anal fissures, or bleeding from cancer or inflammation in the small intestine, colon or stomach will cause low iron. If stools are dark, or blood in urine, or any unexplained abdomen pain, see your doctor.
Various foods and vitamins can increase or decrease iron absorption – see below.
Foods high in iron are also generally high in Vitamin B12, and both are required for correct ferritin/iron metabolism and healthy Red Blood Cells.
Vegetarians and vegans in particular are susceptible to low iron and B12, as both come mainly from animal products.
As we age, we tend to have reduced stomach acid, resulting in less B12 absorption, and to a lesser extent, reduced absorption of all other minerals, vitamins and other nutrients.
If we take supplemental iron, the body will absorb less iron from the diet.
If we have a low-iron diet, the body responds by absorbing more iron from anything available in food.

Genetics

Sickle cell disease, thalassemia and haemochromatosis can all be inherited, and genetic testing for these and other genes affecting ferritin/iron is available.

Sickle Cell Anaemia

An inherited condition, mainly descendants of African people. A problem with the haemoglobin beta gene causes some red blood cells to become sickle-shaped, especially in hot, dry and intense exercise conditions.
25% of the population in West Africa have the sicklemia trait, also high in South and Central Americans, especially in Panama. Sometimes appears in Mediterranean countries like Italy, Greece, and Spain. Malaria may be a factor, as Indians, Middle Easterners (e.g. Arabs and Iranians), Native Americans, North Africans, and Turks have small but significant cases.
People with Sickle Cell Anemia actually have an advantage in some countries, as they are able to survive better if infected with Malaria. The “sickleing” of the red blood cells is promoted when the Malaria parasite enters, and the body’s own immune system is then able to identify and destroy the cell, along with the malaria parasite.

Thalassemia

An inherited condition, originating in Mediterranean countries, causing weakening and destruction of red blood cells by mutant genes, affecting haemoglobin production. Similar to Sickle-Cell Anaemia.

Haemochromatosis (inherited iron overload disorder)

There is a genetic test for Haemochromatosis.
The test gives results for mutations C282Y and/or H63D of the HFE gene:

  • Mutation not found (No Haemochromatosis)
  • Heterozygous (which means one faulty gene) – Generally no or mild symptoms, bu bay be a “carrier” for children
  • Homozygous (which means two faulty genes)

Children of a Mother and Father who are both carriers of one faulty gene have:

  • 50% risk of inheriting one mutated HFE gene (and becoming a carrier)
  • 25% risk of inheriting both mutated HFE genes (and at risk of excess iron absorption and symptoms of haemochromatosis)
  • 25% risk of inheriting two normal genes, and will not be a carrier

Around 1 in 188 Australians have the HFE genotype C282Y mutation, the most dangerous kind, although 1 in 8 people are carriers for this gene. There are many primary (inherited) types, including:

  • Type 1 – Classical haemochromatosis – Gene Mutation – HFE Genes C282Y and H63D, often with variations. C282Y is more serious.
  • Type 2A – Juvenile haemochromatosis – HJV (Haemojuvelin), also known as RGMc and HFE2 Genes
  • Type 2B – Hepcidin antimicrobial peptide (HAMP) or HFE2B Gene
  • Type 3 – Gene Mutation – Transferrin receptor-2 (TFR2 or HFE3 Genes)
  • Type 4 – African Iron Overload – Ferroportin (SLC11A3/SLC40A1 Genes)
  • Neonatal haemochromatosis – unknown cause
  • Acaeruloplasminaemia (very rare) – Caeruloplasmin
  • Congenital atransferrinaemia (very rare) – Transferrin
  • GRACILE syndrome (very rare) – BCS1L Gene

Also secondary types, which are not inherited, but acquired, especially if the patient has received many repeated blood transfusions.

  • Severe chronic haemolysis – either intravascular haemolysis or ineffective erythropoiesis (haemolysis within the bone marrow)
  • Excess iron from the diet
  • Excess iron from supplements. Any supplements must be kept away from children. This is a common cause of childhood poisoning

Conditions may involve mutant genes inherited from both parents, so patients may have widely differing symptoms.
1 in 700 people with haemochromatosis have no mutation in the HFE gene. This is called Non-HFE haemochromatosis, due to mutations in other genes.

Symptoms of Low Ferritin/Iron

  • Brittle Nails and/or spoon-shaped fingernails
  • Intolerance to Cold
  • Craving or Eating Non-Foods – dirt, hair, coins, etc (Pica)
  • Irritibility, Loss of Concentration, Dizziness
  • Pale appearance, especially membranes – inside of mouth and eyelids
  • Headache
  • Increased infections
  • RLS (Restless Leg Syndrome)
  • Shortness of Breath
  • Weakness
  • Fatigue
  • Loss of Appetite
  • Mouth Ulcers
  • Dry Mouth and/or Sore Tongue
  • Tachycardia (faster than normal heartbeat
  • Arrhythmia (irregular heart beat)
  • Dizziness
  • Drowsiness
  • Loss of Consciousness (Syncope)
  • Enlarged spleen
  • Vitamin B12 deficiency
  • Vitamin D3 deficiency

Symptoms – High Ferritin/Iron

  • Chronic fatigue, tiredness, weakness
  • Low levels of L-Glutathione
  • Low levels of antioxidants
  • Joint pain or aches
  • Abdominal pain
  • Diabetes mellitus (Type 2)
  • Arrhythmia (irregular heart beat)
  • Congestive heart failure
  • Heart attack
  • Changes in skin colour to bronze, ashen-grey or green
  • Period is irregular or stops (women)
  • Low Libido
  • Osteoporosis
  • Osteoarthritis
  • Hair loss
  • Enlarged liver or spleen
  • Impotence (men)
  • Infertility
  • Hypogonadism
  • Hypothyroidism
  • Depression
  • Mood swings
  • Low adrenal function
  • Neurodegenerative disease
  • High blood glucose
  • High liver enzymes – ALT, AST, GGT
  • High serum iron and serum ferritin
  • Higher risk of cancer
  • Weight Loss

How Much Iron do we Need?

Depends on who we are.
For post-menopausal women and healthy men, 8mg daily.
For menopausal women or blood donors, 18mg daily to replace iron in lost blood.
For pregnant women, 27mg daily for rapid growth and development.
Many breakfast cereals give all of menopausal women’s iron requirement, two-thirds the amount required for pregnancy, but double the amount for men and post-menopausal women, not counting intake from other meals.
Typically, there is a total of 3 to 4 grams of iron in the body. A normal diet should give most people enough iron, but vgans and vegetarians and blood donors will oten be lacking. People consuming large quantities of meat, especially liver meats, can reach iron overload withour knowing.

To INCREASE Ferritin/Iron

  • Some breakfast cereals are fortified with extra iron
  • Red meat – beef, lamb, kangaroo and organ meats, especially liver are rich in iron
  • Low alcohol consumption (one drink daily with food) is fine, but overdoing it will cause liver damage
  • Vitamin C (orange juice, fruit, supplements) will increase absorption of iron from food, up to 6 times greater absorption
  • Avoid donating blood too often, or not at all if haemoglobin is less than 130 (men) or 120 (women)
  • Build testosterone, by diet and exercise and/or supplementation to help build new red blood cells
  • If vitamin B-12 and/or Folate is low, supplement or change diet

Iron Overload

This is a dangerous condition, and if iron overload is suspected, a ferritin study is required. See above under “Blood Tests”.

To DECREASE Ferritin/Iron

Blood donation (therapeutic venesection) is usually the best method, and helps save lives of others.
If ineligible for Red Cross donations, private organisations can do this. Usually a ferritin reading of several hundred can be brought down to the normal range after half a dozen or so blood donations.
The only down side is that donations must be spread out over many months to allow the body to build new blood.
Next best option is using IP6 (Inositol Hexaphosphate) which can chelate excess iron from the body.
IP6 can help when the body cannot excrete excess ferritin/iron on it’s own, which can often happen. The body has limited capacity to remove iron, as it tries to always recycle iron.
Also the best alternative when blood donation is impossible, impracticable or ruled out for religious reasons.
IP6 has the added benefit of improving immunity.

More serious cases of iron overload can be treated with:
Deferoxamine (Desferal®) – administered via a needle from a pump attached to the body for 8 to 10 hours a day.
Deferasirox (Exjade®) – a tablet dissolved in a glass of water or juice, taken once a day.
Both methods can have undesirable side-effects, including hearing and vision loss, nausea, diarrhea, rash, kidney or liver injury, so LeanMachine recommends first using blood donation, IP6 and diet measures first.

  • Donate Blood at the Red Cross. Reduces old blood recycling, leading to reduced iron stores which are used up in making new blood. May take several sessions over several months
  • Take IP6 (Inositol Hexaphosphate)
  • Eat cabbage every day (cooked, not raw). No scientific studies have been carried out with cabbage, but plenty of anecdotal evidence suggest it works, possibly by filling up on cabbage, the patient may not feel like red meat…
  • Avoid red meat, and especially liver and other organ meats
  • Drink green tea, black tea, oolong tea or coffee, and/or take a Green Tea Extract. The tannins in tea reduce iron absorption
  • Take Vitamin EVitamin B-6Curcumin
  • Avoid taking too much Vitamin C, as this can increase iron absorption
  • Do not cook in iron pots or pans, even if you have low iron, as metallic iron is bad for the body, regardless of the Ferritin status
  • Avoid alcohol, especially wine with steak
  • Never take iron supplements. If you take a multivitamin, or a “women’s health” or “men’s health” supplement, ensure it has no iron
  • Never drink well water or bore water unless it has been tested free from iron (and other harmful metals)
  • Take Astaxanthin – an extremely powerful antioxidant, 550 times better than Vitamin E. Will not chelate iron, but will help repair the damage

The Low-Iron Diet

Green Tea, black tea, oolong tea and coffee all contain tannins which inhibit iron absorption, so drinking these with a meal can help lower ferritin and iron levels.
Drinking milk with a meal also helps reduce iron absorption because of the calcium in milk that competes with iron for absorption.
Eat an egg every day, as eggs contain a compound that impairs absorption of iron. Avoid red meats, chicken and fish are better choices, much lower in iron than red meat. Better still, go vegetarian or vegan.
Calcium supplements can reduce iron absorption, but can also cause increased plaque in arteries, especially the Calcium Carbonate (ground limestone) used in cheap supplements, so should be avoided.
Breakfast cereals with whole grains contain some iron, but many are fortified with extra iron and should be avoided. Try an apple for breakfast instead and help keep the doctor away.
LeanMachine online supplements

Disclaimer

LeanMachine is a health researchere, not a doctor, and everyone should consult with their own health professional before taking any product to ensure there is no conflict with existing prescription medication.
LeanMachine has been researching nutrition and health since 2010 and has completed many relevant studies including:
Open2Study, Australia – Food, Nutrition and Your Health
RMIT University, Australia – Foundations of Psychology
Swinburne University of Technology, Australia – Chemistry – Building Blocks of the World
University of Washington, USA – Energy, Diet and Weight
Johns Hopkins Bloomberg School of Public Health, USA – Health Issues for Aging Populations
Johns Hopkins Bloomberg School of Public Health, USA – International Nutrition
Johns Hopkins Bloomberg School of Public Health, USA – Methods in Biostatistics I
Johns Hopkins Bloomberg School of Public Health, USA – Methods in Biostatistics II
Johns Hopkins Bloomberg School of Public Health, USA – Principles of Human Nutrition
TUFTS University, USA – Nutrition and Medicine
TUFTS University, USA – Lipids/Cardiovascular Disease I and Lipids/Cardiovascular Disease II
Technical Learning College, USA – Western Herbology, Identification, Formulas
Bath University, England – Inside Cancer
WebMD Education – The Link Between Stroke and Atrial Fibrillation
WebMD Education – High Potassium: Causes and Reasons to Treat
Leiden University Medical Center, Netherlands – Anatomy of the Abdomen and Pelvis
MIT (Massachusetts Institute of Technology) – A Clinical Approach to the Human Brain
LeanMachine has now examined thousands of studies, journals and reports related to health and nutrition and this research is ongoing.

Updated 13th January 2020, Copyright © 1999-2020 Brenton Wight and BJ & HJ Wight trading as Lean Machine abn 55293601285

How Biochar Is Triggering a New Industrial Revolution


Reproduced from original article:
https://articles.mercola.com/sites/articles/archive/2019/12/08/sustainable-biochar-to-mitigate-global-climate-change.aspx

Analysis by Dr. Joseph Mercola   Fact Checked
December 08, 2019

STORY AT-A-GLANCE

  • Pollution and destructive agricultural practices are devastating the ecosystem and influencing our global weather patterns. Adding biochar to soil and building materials of all kinds is a simple and inexpensive strategy that can remediate much of this damage
  • Biochar added to cattle feed helps eliminate the need for antibiotics. When grazed on pasture, the manure from cows fed biochar improves plant growth, reducing cattle feed and water requirements, speeds up field rotation as the pasture recovers faster, and helps the land resist floods and droughts
  • Aside from adding activated biochar to farm fields, there are myriad other uses. It can be added to steel, concrete, asphalt, buildings, bridges, roads and tunnels
  • We do not need to burn trees to create biochar. Alternative waste stream sources that can be used include chicken litter, paper mill waste, municipal sewage, industrial pallets, textile scraps, sawdust and scrap wood from furniture factories, just to name a few
  • For entrepreneurs, biochar now offers opportunities on par with those available at the beginning of the industrial revolution. There’s enormous opportunity for microenterprise, new businesses and, indeed, whole new industries to start up

In this interview, Albert Bates, director of the Global Village Institute for Appropriate Technology and author of “Burn: Using Fire to Cool the Earth,” discusses how biochar can transform agriculture while simultaneously normalize our climate.

Biochar also has a wide range of other industrial uses that can allow us to radically reduce carbon in our atmosphere. Many believe climate change is a fabrication concocted by political scientists with a vested interest.

But the reality is, we have changed our world with pollution and destructive agricultural practices that are devastating the ecosystem and influencing our global weather patterns. The good news is, adding biochar to soil and building materials of all kinds is a simple and inexpensive strategy that can remediate much of this damage.

Moments of Revelation

Bates began his investigation into this issue while working as an attorney. He explains:

“I was doing environmental law and represented a group of plaintiffs who were suing a chemical company for polluting a local water supply … an aquifer, which is federally protected. It was kind of a slam-dunk case.

But the chemical company came into court and argued that there’s plenty of water in Tennessee. We don’t need to be protecting sources that are 1 kilometer underground. I brought in experts to show climate change is going to change the amount of water that we need in the future.

Population growth is going to change the amount of water we need. We really should be protecting those sources … I won the case, but I lost my nerve. I began to [think], ‘Oh my gosh. What’s going to happen here on Earth?’ … I had this revelation at that time. I left the practice of law and went off and became a mushroom farmer …

It was a time for me to just take stock, to sit back and to be with my forest and to think about things and not be in the conflict zone until I’d sorted it out … Eventually I became more involved with permaculture. I became a permaculture instructor.

That took me to a conference on permaculture in Brazil. While there, I [saw] what they call the ‘terra preta de indio’ … the Amazonian dark earths. This was a mystery that had been around for 400 years.

How did people living at the equator make these rich, deep black soils that go meters deep into the ground, when, really, everywhere you look that’s at that latitude, it’s a two-season system with a rainy season and a dry season?

The ground doesn’t store the nutrients. The plants do. When a plant dies, it’s immediately taken back up into the living biomass. There’s really no soil wealth like we have in the temperate zones. So how did it happen that they have this rich, deep black soil in the Amazon?

The answer was that they had made it. They had made that fertile soil … I had to understand, ‘How does this work? How did you actually build soils?’ It turns out the secret ingredient was charcoal … they had created a structure in the soil. It wasn’t chemistry that was making the fertility. It was biology. That hard, mineralized carbon became a habitat for soil microbes.”

The Importance of Soil Biology

As explained by Bates, soil microbes create what you might think of as a coral reef in the soil — a highly fertile area of water storage, air storage and nutrient storage that can nourish a wide variety of soil microbes. This soil biology makes for very nutrient-dense plants. That, in turn, allowed large civilizations to flourish in the Amazon.

The charcoal also takes carbon from the atmosphere, sequestering it in the earth for long periods of time — thousands of years, typically, provided you don’t use destructive agricultural processes such as tilling. So, this carbon sequestration benefits not only soils and plants but also the atmosphere.

“Right now, at this point in time, we really need [carbon sequestration] for another reason; we need to have that timeout to give us some time to slow our emissions down, to go carbon-neutral.

This is what you might call carbon-negative or a drawdown effect of carbon actually leaving the atmosphere, leaving the ocean and coming back into the land, where it had been, as fossil fuels, before.”

How Biochar Is Created

Now, a simple wood fire is not sufficient, as this will merely create ash, which doesn’t create the carbon structure needed. What you need to do is burn the biomass without oxygen. This creates a type of charcoal typically referred to as biochar.

“Biochar is distinguished from charcoal,” Bates explains. “Every fire goes through two stages. The first stage is you warm up the material or maybe strike a match and the phosphor in the end creates the flame. That heats up the match for just a moment, and then you get the burning, the smoke and the flame.

As it begins to burn down the match, it leaves behind a charcoal stick. That’s the first phase of the fire. That’s carbonization. That’s actually the burning of the gases … Each [gas has] its own kindling temperature. The last to go would be carbon. Finally, what happens is the carbon oxidizes and joins with oxygen.

It turns into CO2 or CO. As that carbon stick on the end of the match turns into ash, that’s the second stage of the fire. In the process of making charcoal — I’ll distinguish that from biochar in a second — the process is to stop it before it oxidizes.

The way you do that is to deprive the fire of oxygen … So, you’re baking at the first stage. You’re burning off the gases … And then you’re holding that last stage, the hard carbon stage, in a permanent condition and not letting it go to ash and not creating smoke. That’s the pyrolysis process. That’s the carbonization …

If you look at it under a microscope, you see that it’s got all of these pores. Some of that is the original plant structure and some of that is the volatile gases. As they explode, they cratered the sides of the original vessels of the plant and left behind the skeletal structure …

What you get there is this ability to absorb and adhere things. It’s got a cation exchange. It’s kind of magnetic in the way that it sticks things to its walls. It’s particularly strong in sticking nitrogen [and] sulfur …”

Biochar for Detox and Cattle Feed

The ability to absorb is what makes activated charcoal and biochar so effective for detoxification. Caution needs to be used when taken internally, as it will chelate beneficial minerals as well. I like to take it at least one hour before or two hours after a meal.

But it’s really inexpensive and something, I think, most people can benefit from, considering it’s nearly impossible these days to avoid toxic chemical exposures. You need some type of detoxification agent to help eliminate some of these toxins. Biochar can be an effective tool for that. Biochar is also used to great benefit in livestock. When you add biochar to the animals’ diet, it helps eliminate the need for antibiotics.

“It’s especially significant in cattle,” Bates says. “Cows have enteric digestion. They’ve got their rumen. They’re doing fermentation in their stomachs. You’ve got this process of fermentation, which is a microbial soup. It’s bacterially active ferment.

If you can add a little bit of biochar to that, it actually improves it the same way it improves the microbial habitant in soil. It becomes that coral-reef effect within the gut of the animal … Their rumen gets really good. The antibiotic need diminishes to zero. They then add weight faster.

They have a higher efficiency of feed conversion, so less food puts on more weight or produces more milk than it had before they started supplementing 1% to 2% biochar into their diet. Not only that, when it comes out the back end of the animal, first off, you’re getting about 30% less methane production … when you add biochar to the diet at 1%.

But now, that manure is now rich in biochar, and so, it’s going to compost about one-third or a quarter faster than normal composting operations would take. It scavenges nitrous oxide and sulfur dioxide. It takes those elements that would become greenhouse gases in the composting process, holds them, uses them and puts them back into what’s the final product that’s going into the soil.

A cow that’s been grazed in an open pasture and is being fed biochar as a supplement is fertilizing that pasture to the point where the roots of the grasses grow deeper and thicker. The grasses come up faster and more nutrient-dense, so that, again, reduces the cattle feed requirement.

You can graze more cattle on the same amount with faster rotations because of this. And then you have the effect of the cattle — the pasture recovering [faster] and being able to resist floods and droughts. It just continues to get better year after year because the biochar is slowly being added to the soil from the cow. So, you’ve got this beneficial loop.”

In his book, Bates features an Australian farmer, Doug Powell, who fed his cows biochar and added large amounts of dung beetles to his fields. The beetles roll up balls of manure and bring them underground. In the first year, he increased profits by $20,000 simply by bringing more biochar into the ground. This is just one innovative solution offered in “Burn: Using Fire to Cool the Earth.”

Climate in Crisis

Bates has investigated the predicted effects of 1, 2 or 3 degrees Celsius of warming. In his 1990 book, “Climate in Crisis,” Bates made some predictions that are now coming to pass.

“Right now, we’re seeing this breakdown of the polar vortex … We used to have just this circular motion around the pulse of the Jetstream. The North Pole, in particular, had this very even circular motion. It had a little bit of waves in it.

We get cold fronts every now and then coming down to the Northern United States. But for the most part, it was a fairly even average distribution. Then, starting about two to three years ago, we had what we call Rossby Waves.

They may begin to break and dive deep into the continent and at the same time drive heat far up into the Arctic. That’s had the effect of accelerating the melting of the Arctic, the Greenland ice [and] Siberian permafrost, which is an accelerant, because the permafrost is full of methane …

That’s now being released to the atmosphere. This year we’re seeing forest fires above the Arctic Circle … There are methane fires coming out along the coastlines. We’re seeing this rapid melting of Greenland and of the Arctic …

If you look at a map today, right now, where is the temperature at this moment in the world? You will see it’s really hot in Greenland. And then just right next to that, in Scandinavia and the Northwestern corner of Russia, it’s extremely cold. [In] China it’s extremely hot.

And then you go a little bit farther around and you find that it’s hot in Southern Alaska. Now we’re starting to see this alternating heat and cold as that big wave motion is happening from the pole to the equator.

That’s climate weirding. It’s making it extremely difficult for farmers to do normal crops, to predict when’s the cold going to be too extreme or when they’re going to get a drought.

They’re actually getting these enormous swings of high temperatures and then cold temperatures, and then high temperatures and then cold temperatures. We hit records all across Europe last week: 108 degrees Fahrenheit in Paris. The next day, the Tour de France stage had to be cancelled because of ice, snow and slush on the roadway.

That’s what I’m talking about. It’s these extremes that are very challenging. When I start to look for solutions, I have to say it’s about trees. It’s about forests. It’s about more photosynthesis.”

Again, even if you don’t believe in climate change, the solutions Bates offers are good for the planet no matter what. There is absolutely no downside to using them.

It’s going to lower pollution levels (and who doesn’t want cleaner air, water and soil?), improve the quality and nutrient density of crops, reduce chemical runoff and thus reduce toxic algae growth in our oceans. These strategies are also economically beneficial, so there’s a significant profit motive as well.

Novel Uses for Charcoal

Aside from adding biochar to farm fields, there are myriad other uses. As noted by Bates, you can add it to steel, concrete, asphalt, buildings, bridges, roads and tunnels.

“Let’s start putting carbon into everything. Let’s start using more wood. Let’s start having more of a wooden kind of a vernacular to our way of living.

Actually, it’s very beautiful and it has benefits, like it makes the cement stronger. It makes the asphalt less likely to form potholes. There are all these benefits that you get when you start to experiment with these materials,” he says.

“We’ve had this problem in the scientific community, which was looking for ways to go beyond just emissions reductions and actually pull carbon out of the atmosphere. They found limits to this biochar strategy …

How many trees would you have to have, or how much waste material from one source or another would you have to have in order to make enough biochar to make a difference, and then where would you put that biochar? They figured maybe 2 billion tons a year could be put into agriculture and into making fertilizers. That’s not enough.

We need to get about 50 billion tons out of the atmosphere every year because we’re putting 40 billion tons up there. We need to take out what we’re putting up there and another quarter or so in order to start bringing down the concentrations in the atmosphere, in order to restore the climate back to normal.

We need to have an active drawdown system. How do you do that? My co-author, Kathleen Draper, and I began to look at, ‘Where can we store biochar besides agriculture?’ We started to look at biochar plastics. I could actually make a polymer using biochar that is comparable to the kind of polymers that you would use to make roofing tiles, surfboards, boats or any number of things.

It’s hard. It’s durable. It’s going to be there but it’s also taking carbon out of the atmosphere. I looked at cement. If you take normal cement and replace part of the sand that’s in the cement, if you can replace up to maybe 8%, you’re not reducing the strength of the concrete. The first 2% actually increases the strength.

There’s no reason for a cement maker not to be replacing sand with biochar. The cost is comparable and the price of sand is going up and the price of biochar is coming down. So, let’s make cement with a biochar content …

You’re increasing the strength. You’re increasing the crack resistance, the anti-spalling, which is heat resistance. You’re increasing the tensile strength and the compressive strength. All of that just by changing out sand for biochar.”

Biochar Provides EMF Shielding

Another reason for using biochar in building materials is the fact that the carbon acts as an electromagnetic field (EMF) shield, thus insulating you from EMFs from the environment. It also intercepts Wi-Fi and blocks infrared. In essence, it’s an effective solution for creating a Faraday cage, radically reducing the amounts of radiofrequencies that are entering your home environment from the outside.

“I go around looking at electromagnetic sources with my meter. I get spikes near the electrical boxes. I think it would be so easy if the plastics that make those circuit boxes or those wall-framing sockets were just made of this kind of material instead of just plain plastic. They could be blocking that electric spectrum from entering the room, just that simply,” Bates says.

Biomass Sources

Now, we wouldn’t necessarily want to burn down our forests to create biochar, and the good news is we don’t need to. Bates cites an Australian study that looked at novel sources for biochar. Two sources, chicken litter and paper mill waste, could provide biochar into the indefinite future for Australia, the paper found.

Other sources include municipal sewage or biosolids, industrial pallets, textile scraps, sawdust and scrap wood from furniture factories. At present, only 20% or so of the waste stream is being utilized. According to Bates, it’s large enough that we don’t need to cut down trees to make biochar.

“You can be making biochar on a local scale, community scale, from small reactors, close to source; identifying waste streams ahead of time and then tapping those to make your biochar with.

If it’s a little bit contaminated … you wouldn’t want that in your garden. But you could use it for a cement. You could put it into the roadways. If you add it to asphalt, it reduces a number of potholes. It makes the highway more flexible. The cars get better mileage both on gasoline and on the tires.

You actually have this beneficial effect from adding it to asphalt. All of those things are possible. You could use those waste streams that are contaminated and put it into those products that don’t have to be as pure as your food.”

China Leads the Way in Biochar Innovation

After finishing his book (which is why this is not in there), Bates went to China, where he discovered biochar has become a new industrial revolution. China, Bates says, is far ahead of everyone else in this area, installing biochar reactors in areas where suitable waste streams are located.

They get rid of the waste and create biochar that is 15% more effective than conventional fertilizers yet costs less. Bates explains:

“In China, they went from small scale field trials to building the first prototype large reactors — rotary kilns that are processing thousands of tons a day — to … deploying six of them in strategic places around the country. And then the next year, going to 24. And then this year, going to 200. Next year, they’re going to put it out on the new Silk Road to India, Africa and so on.

These are like plug-and-play. You just drop the reactor on the site where you’ve got a lot of biomass coming in from waste. You put it back into those fields and [they become] drought-resistant and flood-resistant. You get better yields and the price is less than fertilizer …

They’re building ecovillages. They want to build 100 ecovillages in five years. These are villages that will be net draw down. They’ll be taking more carbon out the atmosphere. They’ll be self-sufficient in food and clean water and education and so forth within the village.

For the farmers who are moving to those villages, it’s a better life. It’s a better system than they had before. They provide the labor that’s needed to work in those large biochar-producing units that they’re putting in.”

Sweden Has Embraced Biochar-Infused Pavement Materials

Sweden is also taking advantage of biochar technology, placing biochar underneath pavement and using biochar-infused streets and sidewalks. A small-scale test showed it massively improved tree growth and helped clean water supplies.

According to Bates, Stockholm had originally planned to meet its biochar needs using municipal wastes. They soon realized they needed more, so Finland is now producing biochar for them as well. Sweden reinvented a 200-year-old pavement recipe using gravel and wood oil instead of tar, and biochar (up to 20%) instead of sand. The water-cleansing effect is particularly noteworthy.

“Just the fact that the water itself is being cleaned from the streets and it goes back to the oceans clean — this is very important, especially when you think about microplastics and all of that kind of contaminants that you put into the environment all the time. That’s being cleaned too. None of that is reaching the ocean,” Bates says.

Activating the Biochar

An important point not to be overlooked is that when you’re using biochar for agricultural purposes, you first need to charge or activate it before you put it into the soil. (It does not need to be activated when used in building materials.) As explained by Bates, the “Four M’s” to remember are:1

  1. Moisten — Moisture must be added to the biochar. Fresh from the kiln, biochar is bone dry and hydrophobic (water-repelling). To make it retain water and support microbes, it needs to be made hydrophilic (water-absorbing) again, and this is done by adding sufficient amounts of water, without making it waterlogged. Typically, water is added to the kiln to cool it and stop the fire.
  2. Micronize — Next, the biochar must be broken down into a smaller size through crushing, grinding and screening. Smaller particle sizes increase the surface area and allows the biochar to retain more water and allows for greater ion penetration.
  3. Mineralize — Lastly, you need to mineralize it, meaning you need to add to it the minerals your garden needs, such as rock powder or sea minerals. That will provide the microbes’ the nourishment they need to thrive. It will also add to the plant stores in your garden, allowing your plants to thrive.
  4. Microbial inoculation — Next, you want to add microbes, fungi, bacteria and nonparasitic nematodes. These are aerobic bacteria that can be added through a compost tea. Alternatively, you can add the biochar to your compost pile.

When a plant is deficient in a trace mineral, say magnesium, the exudates that comes out from its roots will trigger a signal through the fungal network that this plant needs more magnesium.

If you have activated biochar in the soil at the root zone, there’s automatic storage of minerals there. When there’s too much of a given mineral, it’s stored in the biochar’s reef-like structure, and when something is needed, it’s taken from that storage and transferred to the plant by nematodes. It is this dynamic structure of the biochar that allows for enormous plant growth.

Adding activated biochar can quadruple plant growth in the first year, Bates says. But you have to charge it properly. If the biochar is not activated, it will store nutrients but not release them to the plant, which can have the opposite effect that you’re looking for.

More Information

For entrepreneurs, biochar now offers opportunities on par with those available at the beginning of the industrial revolution. “That kind of scale of change is underway,” Bates says. “It’s an enormous opportunity for microenterprise, for new businesses, for whole new industries to start.”

One place to find opportunities is to visit the International Biochar Initiative (IBI) website.2 “On any given day, you’re going to find new material there and webinars and opportunities to learn about some of these new industries,” Bates says. If any of this has struck a chord in you, you’ll also want to pick up a copy of his book, “Burn: Using Fire to Cool the Earth.”

The U.S. Biochar Initiative also holds an annual conference in North America,3 and the International Biochar Initiative has an international conference.4 There are also a number of other biochar conferences and symposiums where you can learn a lot in a very short amount of time.

Another valuable resource is the Innovations In Biochar website — a joint creation by the U.S. Department of Agriculture and the U.S. Forest Service. It includes downloadable references such as how to build a kiln, how to use biochar in barns and compost piles, and much more.

– Sources and References

How trace minerals help to heal the body

Reproduced from original article:
www.naturalhealth365.com/trace-minerals-heal-3210.html
by: Natalie Robins, staff writer

sea salt(NaturalHealth365) Even if you try to eat a healthy, organic diet – you could be at risk for nutritional deficiencies without realizing it.  In fact, the National Institutes of Health concluded that “the vast majority of people in both affluent and emerging industrialized countries do not reach even 75 percent of the RDAs for numerous trace minerals.”The importance of nutrient status (and deficiencies) cannot be overstated. For example, magnesium deficiency is widespread among Americans. One study, sponsored by the National Institutes of Health, shows that 68% of Americans are magnesium deficient and, some experts like Carolyn Dean, MD have been warning the public for years.

Editor’s note: Sea salt is an excellent way to get trace minerals into your diet.  But, beware, most brands of sea salt are contaminated with microplastics.  Click here to discover our top pick for sea salt.

What is the importance of trace minerals?

Some minerals, such as calcium, potassium, and phosphorus, are more common in food and in your body. Trace minerals, on the other hand, are essential minerals that you only need in trace amounts.

The following is a condensed look at certain minerals and their purpose in the body:

  • Chromium is necessary for proper regulation of blood sugar and improves insulin sensitivity.
  • Cobalt is present in vitamin B12 and it is necessary for generating healthy, red blood cells.
  • Zinc allows for proper immune response, growth, antioxidant function and wound healing.
  • Selenium is necessary for proper antioxidant function and liver detoxification. It is also essential for healthy muscles and hair.
  • Iodine is necessary for your body to make thyroid hormone – which is involved in almost every process in your body including energy metabolism and temperature regulation.

Bottom line, trace minerals are essential to protect against common health issues, such as heart disease, diabetes, and cognitive decline. Without enough trace minerals, you’re also susceptible to contamination from heavy metals such as arsenic, mercury and lead.

Do NOT ignore the health dangers linked to toxic indoor air.  These chemicals – the ‘off-gassing’ of paints, mattresses, carpets and other home/office building materials – increase your risk of headaches, dementia, heart disease and cancer.

Get the BEST indoor air purification system – at the LOWEST price, exclusively for NaturalHealth365 readers.  I, personally use this system in my home AND office.  Click HERE to order now – before the sale ends.

Why modern farming techniques MUST change to help save humanity

Why aren’t Americans getting enough trace minerals from their food supply?  Obviously, we should be looking at soil content.  Over the past century, the quality of our soil has been depleted by 85 percent – mainly due to modern methods of farming.

The agricultural sector is driven by crop yield, using every possible method to increase the number of pounds harvested. Intensive farming, combined with soil erosion, has resulted in soil with a lower mineral content. To make matters worse, chemical fertilizers are insufficient to replace the minerals needed for optimal health and poison the environment.

The singular focus on agricultural yield comes at the expense of nutritious food products and the nutritional status and health of Americans. Fruits and vegetables are now grown in soil with a lower nutrient content than in the past. A study in Canada found that tomatoes, spinach, cabbage, and lettuce have on average one-eighth the mineral content today than they did at the beginning of the 20th century.

The ocean provides a natural way to correct mineral deficiencies

If you just can’t depend on the produce section of your supermarket, how can you give your body the nutrients it needs to heal your body? The answer may lie in the ocean, which is rich in minerals.

They’re in their complete, non-denatured form, which is the form most beneficial (and recognizable) to the human body.

If you have the time and space, you can grow your own fruits and vegetables using ocean trace minerals to fertilize them. Another option is to eat seaweed, either as a food or as a supplement. Sea vegetable capsules are another source of minerals, and sea vegetables also contain health-promoting compounds such as fucoidan – which can help lower your risk for disease.

Of course, like with any other food, it’s important to know the source – to minimize the risk of consuming toxic chemicals in the food supply.

Editor’s note:  If you want to avoid mineral deficiencies – I encourage you to investigate the health benefits of QuintEssential Optimum Mineralization 3.3.  This super clean product is now available, in limited supply, at the NaturalHealth365 Store.  And, yes, I’ve personally been using this high-quality product for over 4 years!

Sources for this article:

Personalhealthfacts.com
Healthy-Vegetable-Gardening.com

RLS – Restless Leg Syndrome

Written by Brenton Wight – LeanMachine

What is restless legs syndrome (RLS)?

This is a nervous disorder, affecting around 10% of the population, but more prevalent among middle aged or older people.
Up to 40% of women experience at least some mild symptoms during pregnancy, which usually passes at end of term.
Significantly affects more women than men, even allowing for the pregnancy factor.
Often interrupts sleep, so is also considered a sleep disorder.
Stress, pregnancy, heredity, hormonal changes, diabetes, Parkinsons disease, heart, lung, circulatory problems, arthritis and kidney failure are among the many trigger factors.
Smoking, caffeine and alcohol tend to increase symptoms.
Deficiency in iron, magnesium, folate, B-group vitamins can cause or aggravate RLS.
Problems mainly occur at night, but some patients can have symptoms at any time.
Sitting, relaxing, resting, or lying down tends to bring on symptoms, and moving, stretching, or massaging the legs tends to diminish symptoms.
Some people with RLS also have PLMD – Periodic Limb Movement Disorder. This is a sleep disorder where repetitive cramping or jerking of the legs occurs during sleep.
If the condition does not improve, most patients eventually start suffering from other chronic health issues due to lack of sleep. People with sleep disorders have a 65% greater risk to develop cancer.
Symptoms vary between patients, which is why it is often difficult to diagnose, but can include:

  • Itchy feeling
  • Pins and needles sensation
  • Creepy crawly feeling, as if something is crawling on or under the skin
  • Prickling, tingling, tugging, burning or aching sensations
  • Uncontrollable need to move legs
  • Legs jumping, jerking or twitching uncontrollably
  • Uncomfortable sensations deep within the legs
  • Feeling like a fizzy soda is bubbling through the veins
  • Feeling an itch deep within the bones
  • Some symptoms occur in the arms as well as the legs
  • Some patients only have symptoms after stressful events, some have it every night

Causes of RLS

Officially, the cause is unknown and there is no cure.
Possibly an imbalance of dopamine, which transmits signals between nerve cells in the brain.
Some say that abnormal iron uptake by the brain may cause or aggravate RLS.
Around 60% of sufferers have other family members with the same condition.
Those consuming diet soft drinks have greater risk of RLS because these drinks leach potassium from the body. Potassium is imperative for correct nerve function, as well as all of the other electrolytes. Food sources of potassium include bananas, avocados, spinach, sweet potato, yogurt and more.
As well as helping with restless legs, potassium will help lower blood pressure and build strong bones.

Treatment

Prescription Medication

There is no official cure, but doctors often prescribe Ropinirole, which can make symptoms better or worse, and side effects such as dizziness, fainting, severe nausea, narcolepsy, hallucinations and addictive behaviors can be very serious.
A study at Brigham and Women’s Hospital in Boston found that patients with restless leg syndrome have a 40% percent higher risk of death in the next eight years.
Some prescription drugs may mask symptoms, but side-effects may make the condition worse in the long run.
Speak to the doctor about medication.
If snoring or breathing is a problem, the doctor can organise a “sleep study” as a CPAP machine may improve health, lower blood pressure, and supply oxygen that the patient may be missing.
The doctor may simply refer patients to a sleep disorder clinic, as these specialists deal with RLS regularly.
Some doctors recommend dopaminergics, benzodiazepines, or opioids.
Medical conditions such as iron deficiency, diabetes, or nerve damage may be aggravating RLS, so treatment of the underlying problem may reduce symptoms.
If there is no underlying condition and all else fails, some prescription medication may help to reduce symptoms.
Medication works for some people, aggravates it for others, and several types may have to be tried for best results.
Prescription medications which initially work may become less effective over time.
Some side effects include nausea, headache, daytime sleepiness, and may increase risk of compulsive disorders like gambling, binge eating, shopping, etc.
Parkinsons medication may help with RLS – pramipexole (Mirapex), ropinirole (Requip), rotigotine transdermal system (Neupro), Sinemet (carbidopa/levodopa), cabergoline and pergolide.
Side effects of Parkinsons medications include nausea, lightheadedness, fatigue, and an increased risk of heart disease.
Prescription painkillers like Codeine, Oxycodone, Vicodin, Percocet, etc can provide relief in severe, unrelenting cases of RLS, but these can be addictive.
Side effects include nausea, dizziness, constipation, and can cause other problems, and the effect wears off over time, often leading the patient to over-dose.
Sleep medications and muscle relaxants such as Ambien, Sonata, Klonopin may help those whose RLS keeps them awake all night, but do not help the leg twitching, and can cause daytime drowsiness.
Anti-seizure medications such as Neurontin, Tegretol, Epitol may help painful daytime symptoms, but side effects include dizziness and drowsiness.
Obviously, pregnant women should always avoid prescription medication where possible.

Medications that can make RLS worse

The doctor should review all medications you are taking. Some prescription and over the counter drugs can aggravate RLS. Some known medications to watch out for are:

  • Over-the-counter sleeping pills
  • Antihistamines – found in allergy and many cold meds like Benadryl, NyQuil, Dimetapp
  • Anti-nausea medications – like Antivert, Compazine, Dramamine
  • Calcium channel blockers (drugs for heart and high blood pressure)
  • Antidepressants such as Prozac, Effexor, Lexapro
  • Antipsychotics – used for bipolar disorder and schizophrenia

The Leg Wrap Cure

This natural treatment is more effective than any drug, according to the Lake Erie Research Institute in Pennsylvania.
Researchers created a leg/foot wrap which places pressure on two foot muscles: The abductor hallucis and the flexor hallucis brevis. The wrap was used in an eight-week clinical trial of 30 moderate RLS patients, with great results. 90% of the participants using the leg wrap experienced improvement in their symptoms, while only 63% of those taking Ropinirol found improvement. Those using the leg wrap reduced sleepless nights by 82%.
The wrap is believed to be more effective in the way it targets the two muscles known to ease RLS symptoms, and because this causes the brain to release dopamine. RLS sufferers are thought to have a dopamine deficiency.
Conventional leg wraps, physiotherapy, acupuncture or massage directed at these muscles, all appear to have the same benefits.

Other treatments

  • Exercise every day – walk, swim, aerobic, yoga, pilates, tai chi, but avoid very strenuous exercise
  • Calf stretch – with hands against a wall, bend the right knee, step the left leg back with foot flat on the floor to stretch the calf muscle, hold for 20 seconds, switch legs and repeat
  • Front thigh stretch: grab an ankle and pull toward the buttock, keeping the other leg straight, hold for 30 seconds, switch legs and repeat
  • Hip stretch: place the left foot on a chair with the knee bent, keeping the back straight, press the pelvis forward to stretch the top of the right thigh, hold for 30 seconds, switch legs and repeat
  • Cut back or give up caffeine, smoking and alcohol
  • Wear warm socks to bed
  • Wearing compression stockings to bed
  • Get sunlight during the day and sleep in a pitch-black room or wear a mask – helps the circadian rhythm required for a good sleep
  • Leg massage, any time through the day, but most important before bed
  • Acupuncture (do not be afraid of needles – it might just work!)
  • Avoid intense exercise before bedtime
  • Losing excess weight will reduce symptoms – cut back on carbohydrates, processed foods and trans fats
  • Change ergonomics, changes such as working from a high stool allowing legs to dangle
  • Let co-workers, friends and family know why you must keep moving so they can help create a healthy environment at work and home
  • Sit in an aisle seat during movies, meetings, aircraft etc, allowing periodic walking around
  • Get adequate sleep – always a problem when sleep is interrupted
  • Improve sleep patterns: try a consistent bed time, or sleep later in the morning
  • Aromatherapy: Lavender, eucalyptus or other oils in the bedroom can help sleep
  • Drink plenty of water, sipped slowly throughout the day and evenings to prevent dehydration of muscles
  • Take a hot (hot as you can stand it) shower just before bed, scrubbing legs vigorously
  • Have more sex! Orgasm releases natural dopamine and opioids which can help calm the legs
  • Slowly slide the leg back and forth on the bed for a few minutes and repeat with the other leg. May help relieve jumping
  • Leg lunge exercises at bedtime, but be careful not to overdo it. More intense lunges are better earlier in the day
  • Menthol creams such as Tiger Balm or Vicks Vapor Rub, rubbed into the legs before bed
  • Balance electrolytes: sodium, potassium, calcium, magnesium, chloride, phosphate. Read the electrolyte section in my Blood Tests article
  • A hot soak in the bathtub with Epsom salts, apple cider vinegar or baking soda, before bed
  • Relaxation, meditation, deep breathing and other stress-reducing activities
  • Apply hot or cold packs to the legs. Alternating between hot and cold can help
  • Sleep with a pillow between the legs to help prevent compressing leg nerves
  • Keep a sleep diary for RLS symptoms – this will help determine which foods or activities aggravate symptoms
  • Muscle relaxation, deep breathing and meditation at bedtime – see below

Muscle relaxation and breathing

Breathe deeply for a few minutes to oxygenate the lungs (breathing out fully is just as important as breathing in).
Tense the muscles in the feet and hold for a few seconds.
Breathe deeply again, and do the same with the calf muscles, and repeat with the thigh muscles.
Repeat with the other muscles all the way up to the neck.
The major muscle groups should now be more relaxed and oxygenated.

Lifestyle Changes

Fatigue can worsen the symptoms of RLS, so getting enough sleep is vital.
Regular exercise: If push-ups or squats do not appeal, then tennis, swimming, bowls, dancing, zumba, tai-chi, pilates, yoga, walking are a few more pleasant options.
Hit the sack at the same time every night, (or try warm baths before bed, or reading in bed) allowing plenty of time for winding down.
A warm bath with half a cup of Epsom Salts in the water can increase magnesium intake through the skin, avoiding diarrhea which can be the result of taking too much magnesium in supplement form. Magnesium also helps lower blood pressure, improve the cardiovascular system, and improve all nerve conditions.
Avoid TV, bright lights, etc for an hour or more before bed time.
Get support from family members. It will not hurt them to follow the same routine.
Reduce stress. Engage in a hobby, craft, or any pleasing activity can help calm down the nerves, and help forget the stressful events of the day, preferably something not involving sitting for long periods.

Supplements which can help RLS

  • A tablespoon of apple cider vinegar in water at bedtime (or ACV capsules if the taste is a problem)
  • 5-HTP before bed can help calm the legs and improve sleep quality
  • Magnesium supplements 400 to 600mg daily – also helps diabetes, blood pressure, etc
  • vitamin D3 also builds bones, improves immunity
  • vitamin K2 to keep calcium in bones and out of blood vessels
  • MSM – (Methylsulfonyl Methane) – to reduce inflammation and pain, improve nerves, increase pain tolerance
  • Vitamin B-Group for nerve health
  • Active Vitamin B12 for extra nerve health
  • Active Folate essential for nerve function
  • Iron – ONLY after a blood test showing deficiency, and NEVER overdose!
  • Valerian may help get a better night’s sleep
  • Vitamin E may improve symptoms
  • D-ribose 5 grams powder once daily for prevention, 3 daily for treatment
  • Potassium and Iodine Potassium deficiency is not uncommon, especially in hot weather. Many prescription drugs deplete potassium

Pain Medication

Over-the-counter pain relievers may reduce symptoms temporarily, but long-term make the body more sensitive to pain.
Paracetamol (Panadol), known in the USA as Tylenol or Acetaminophen all deplete Glutathione, the body’s master antioxidant. Even small doses may damage the liver.
The recommended 8 pills per day (500mg each) has now been reduced to 6 per day, but anyone in severe pain invariably overdoses, so it is best not kept in the house!
It is estimated that 90% of those on the liver transplant waiting list are there because of Paracetamol overdose!
If you have children, note that in Cuba, where Panadol/Tylenol cannot be bought off-the-shelf, Autism cases are less than 1 in 12,000 compared to the USA at 1 in 45, and Australia becoming very close to the USA.
A few decades ago, Autism cases were 1 in 100,000. Perhaps some were not diagnosed, but the increase is still alarming. If one were to include cases of ADD, ADHD, hyperactivity, etc in with the Autism count, it is 1 in every 5 new births and predicted to be 1 in 2 if the alarming increase proceeds over the next 1 or 2 decades!
No double-blind studies have been carried out to prove or disprove the relationship, but LeanMachine requires no further evidence to make a logical conclusion.
More info at www.leanmachine/catalog/articles/autism-spectrum-disorder.php
Aspirin is now proven to cause deadly side effects such as intestinal bleeding.

Supplements to NOT take

Surprisingly, Melatonin supplements (well-known for improving sleep) may aggravate leg movements in those with restless legs syndrome.
Caffeine, alcohol, SSRI antidepressants, antihistamines, and most antipsychotic and antinausea medications can potentially increase symptoms.
Also be aware that RLS can occur as a result of kidney or liver disease. People with these conditions should consult with a healthcare professional before taking supplements

Important

All information here is for education only.
There is no intention to provide medical advice.
LeanMachine no longer sells supplements, but links to the best suppliers are available in our LeanMachine Supplement site.
The information provided is completely independent. Most products can easily be purchased world-wide at health stores, chemists, supermarkets, etc.
LeanMachine cannot take responsibility for any consequences from any treatment, supplement, procedure, exercise, diet, etc resulting from reading or following this information.
This information does not replace the advice of your physician or other health care provider. It is only intended to aid the reader to arriving at a better understanding so that a better outcome with the health provider may be hopefully achieved.
The reader should seek the advice of their physician or other health care provider before undertaking any course of treatment, supplementation or medication.

LeanMachine supplements

Disclaimer

LeanMachine is not a doctor, and everyone should consult with their own health professional before taking any product to ensure there is no conflict with existing prescription medication.
LeanMachine has been studying nutrition and health since 2011 and has completed many relevant studies including:
Open2Study, Australia – Food, Nutrition and Your Health
RMIT University, Australia – Foundations of Psychology
Swinburne University of Technology, Australia – Chemistry – Building Blocks of the World
University of Washington, USA – Energy, Diet and Weight
Johns Hopkins Bloomberg School of Public Health, USA – Health Issues for Aging Populations
Johns Hopkins Bloomberg School of Public Health, USA – International Nutrition
Johns Hopkins Bloomberg School of Public Health, USA – Methods in Biostatistics I
Johns Hopkins Bloomberg School of Public Health, USA – Methods in Biostatistics II
Johns Hopkins Bloomberg School of Public Health, USA – Principles of Human Nutrition
TUFTS University, USA – Nutrition and Medicine
TUFTS University, USA – Lipids/Cardiovascular Disease I and Lipids/Cardiovascular Disease II
Technical Learning College, USA – Western Herbology, Identification, Formulas
Bath University, England – Inside Cancer
WebMD Education – The Link Between Stroke and Atrial Fibrillation
WebMD Education – High Potassium: Causes and Reasons to Treat
Leiden University Medical Center, Netherlands – Anatomy of the Abdomen and Pelvis
MIT (Massachusetts Institute of Technology) – A Clinical Approach to the Human Brain

LeanMachine has now examined thousands of studies, journals and reports related to health and nutrition and this research is ongoing.

Updated 10th January 2020, Copyright © 1999-2019 Brenton Wight and BJ & HJ Wight trading as Lean Machine abn 55293601285