Water

now browsing by category

Water gives us life, we die without it. But water contains Fluoride, Arsenic, Lead, Chlorine and many other toxins. Be careful what you drink!

 

Vitamin C prevents cell damage from toxic water

Reproduced from original article:
www.naturalhealth365.com/cell-damage-antioxidants-3236.html
by:  

cell-damage-toxic-water

(NaturalHealth365) Hexavalent chromium is a harmful industrial contaminant that’s been found in public drinking water throughout the nation. According to the Occupational Health and Safety Administration (OSHA), the contaminant is carcinogenic; exposure can also lead to health problems like organ damage and asthma. But, given how serious this environmental toxin can be, you may be surprised to learn that antioxidants like vitamin C could help.

Also known as ascorbic acid, vitamin C is a well-studied nutrient that has several known health benefits. Now, new research out of Olivet Nazarene University in Illinois shows that both vitamin C and other antioxidants may play a key role in protecting you against this potentially dangerous chemical.

Vitamin C protects you against cell damage from industrial toxins

Researchers from The University of Illinois conducted a study to figure out if the antioxidants vitamin C and epigallocatechin gallate (found in green tea) could prevent the type of cell damage and toxicity caused by exposure to hexavalent chromium.

To briefly summarize their findings:

  • Oxidative toxic effects can occur in cells when exposed to water that contains hexavalent chromium at a concentration of 200 parts per billion or more.
  • The toxic effects are mitigated when the same contaminated water interacts with vitamin C at a concentration of just 10 parts per million.
  • Toxic effects of hexavalent chromium are also mitigated when water interacts with the antioxidant epigallocatechin gallate at a concentration of 15 parts per million.

It’s a good sign when new findings corroborate previous research. For instance, last year we reported on the fact that vitamin C has also been shown to chemically destroy another harmful substance – chlorine.

Additionally, other experiments have determined bacterial DNA mutations that normally occur after exposure to 20 parts per billion of hexavalent chromium do not occur when the same bacteria are exposed to 20 parts per million of vitamin C.

Do NOT ignore the health dangers linked to toxic indoor air.  These chemicals – the ‘off-gassing’ of paints, mattresses, carpets and other home/office building materials – increase your risk of headaches, dementia, heart disease and cancer.

Get the BEST indoor air purification system – at the LOWEST price, exclusively for NaturalHealth365 readers.  I, personally use this system in my home AND office.  Click HERE to order now – before the sale ends.

What can we take away from this new data? The researchers suggest that hexavalent chromium is so harmful for human health because it promotes cell damage via oxidization (like metaphorical rust on cells). It makes sense then that antioxidants including vitamin C can be effective at combating these oxidizing effects.

Take advantage of these five other health benefits of vitamin C

Of course, conventional science will insist that we “need more research” to determine if adding vitamin C to your diet could counteract the harmful effects of hexavalent chromium exposure – something that as many as 200 million Americans face.

But, in the meanwhile, check out these other reasons to add more vitamin C  to your diet:

  1. Helps your body produce collagen, the most abundant protein necessary in skin, joints, tendons, and other connective tissues
  2. Accelerates wound healing.
  3. Improves blood vessel health and therefore enhances cardiovascular health.
  4. Reduces the symptoms of seasickness.
  5. Enhances your body’s ability to absorb iron from food and therefore can protect against anemia.

According to Mayo Clinic, you should aim for around 65 to 90 milligrams of vitamin C per day.  But, naturally, integrative healthcare providers will tell you that’s too little – especially for chronically sick people.

You can find more vitamin C in foods like organic kiwi fruit, kale, broccoli, papaya, and cauliflower.  But, again, if you’re not feeling well – you’ll probably need a lot more vitamin C (than found in food) and require some form of supplementation.

Sources for this article include:

Sciencedaily.com
Healthline.com
Medicalnewstoday.com
Mayoclinic.org
OSHA.gov

5 Natural Heartburn Remedies Proven to Beat Drugs

© 30th October 2019 GreenMedInfo LLC. This work is reproduced and distributed with the permission of GreenMedInfo LLC. Want to learn more from GreenMedInfo? Sign up for the newsletter here www.greenmedinfo.com/greenmed/newsletter
Reproduced from original article:
https://www.greenmedinfo.health/blog/5-natural-heartburn-remedies-proven-beat-drugs

Posted on:  Wednesday, October 30th 2019 at 12:30 pm

Here are five natural heartburn remedies that went head to head with drugs and won

Whether you call it heartburn, acid reflux, GERD, or just indigestion, the discomfort is unmistakable. It’s a sour taste at the back of your throat… a burning sensation in the middle of your chest… a persistent dry cough… a painful sensation in your stomach.

Over 60 million Americans get the symptoms at least once a month. And millions every day reach for over-the-counter antacids like Tums. Others rely on histamine blockers like Tagamet (cimetidine), Pepcid (famotidine), or Zantac (famotidine).

Heartburn is now so widespread that the third leading class of drugs on the market is proton pump inhibitors (PPIs). These drugs include Prilosec (omeprazole), Nexium (pantoprazole), and Prevacid (lansoprazole).

Proton Pump Inhibitors were originally prescribed for short-term treatment of peptic ulcers. But today long-term use of these drugs is common for the relief of heartburn and acid reflux. And they’ve been associated with a long list of serious side effects including:

  • Vitamin B12 deficiency
  • Deficiencies of magnesium, zinc and calcium
  • Increased bone and hip fractures
  • Irritable bowel disease
  • Pneumonia
  • Vitamin C Deficiency
  • Gastric Cancer
  • Myopathies
  • Cognitive malfunction
  • Food allergies
  • Clostridium Difficile Diarrhea (C. Diff)
[View the entire list of 30+ adverse effects on GreenMedInfo’s Acid Blocker Research page.]

And none of those pharmaceutical remedies get to the immediate triggers or the root cause of acid reflux. Some aren’t even very good at relieving the symptoms.

Here are five natural remedies that went head to head with drugs and won.

1. Melatonin Beats Prilosec

Brazilian researchers conducted a single blind randomized study of patients suffering from gastro-esophageal reflux disease (GERD). Every day half the patients took 20 mg of omeprazole (Prilosec). The other half took a supplement containing melatonin as well as l-tryptophan, vitamin B6, folic acid, vitamin B12, methionine and betaine.

After just 40 days 100% of the melatonin group had a complete remission of their symptoms. But only 65.7% of the Prilosec group got relief.[i]

Another study of 34 GERD sufferers found that melatonin accelerates the healing effect of omeprazole and therefore shortens the duration of treatment and minimizes adverse side effects.[ii]

And a case study published in Alternative Therapies In Health and Medicine reported that a 64 year-old woman with GERD wanted an alternative to PPIs because she already suffered from osteoporosis. Her doctor found that after 40 days on 6 mg of melatonin she was able to discontinue her PPI without returning symptoms.[iii]

2. Gluten-Free Diet (GFD) Rapidly Improves GERD

Foods containing gluten are a frequent cause of heartburn. Eliminating gluten can resolve the problem.

A study in Argentina evaluated 133 adult celiac disease patients and 70 healthy controls. For four years the participants answered questionnaires about GERD symptoms.[iv]

At the beginning of the study 30.1% of the celiac patients had moderate to severe GERD compared to 5.7% of the healthy controls. After just three months on a gluten-free diet, celiac patients rapidly improved their GERD symptoms. Their symptom rates dropped to those of healthy controls.

And Italian researchers found that a gluten-free diet resolved non-erosive reflux disease in celiac patients after just eight weeks with no recurrence at 12, 18 and 24 months.[v]

3. Ginger Better Than Prevacid

Researchers in India compared ginger to lansoprazole, sold under the brand name Prevacid.[vi]

In an article published in the journal Molecular Research and Food Nutritionthey found that one compound in ginger was 6 to 8 times more potent than Prevacid at inhibiting acid production. In addition, ginger has powerful antioxidant properties that protect fats from oxidizing and shield DNA from damage. The researchers concluded that specific fractions within ginger have “potential in-expensive multistep blockers against ulcer.”

4. Acupuncture More Effective Than Proton Pump Inhibitors

When PPIs prove ineffective for patients, doctors typically double the dose. University of Arizona researchers compared a second dose of proton pump inhibitors to acupuncture treatments in GERD patients. In a 4-week randomized study of 30 patients, half were assigned to take a double dose of their PPI. The other half took their normal dose but received acupuncture treatments twice a week.

The acupuncture group experienced significant decreases in daytime heartburn, night-time heartburn, and acid regurgitation. They also significantly improved their general health. Those taking a double dose of their PPI did not have any significant changes.[vii]

5. Water Lowers Stomach Acid Faster Than Drugs

Greek researchers tested various antacids and PPIs against drinking a glass of water to reduce stomach acid. They gave 12 healthy subjects a single dose of either water (about 7 ounces), an antacid, Ranitidine (Zantac), Omeprazole (Prilosec), Esomeprazole (Nexium), or Rabeprazole (AcipHex). Then they monitored their stomach acid for six hours.

They found that far and away water worked fastest to decrease stomach acid taking only one minute to be effective. The antacid took twice as long and the drugs took anywhere from 50 to 175 minutes to match water.[viii]

For more information on how to relieve symptoms of acid reflux, read Heartburn Solved: How to Reverse Acid Reflux and GERD Naturally.

Originally published: 2014-09-28

Article updated: 2019-10-30


References

[i] Ricardo de Souza Pereira, “Regression of gastroesophageal reflux disease symptoms using dietary supplementation with melatonin, vitamins and aminoacids: comparison with omeprazole.” J Pineal Res. 2006 Oct;41(3):195-200. PMID: 16948779

[ii] Tharwat S Kandil et al, “The potential therapeutic effect of melatonin in Gastro-Esophageal Reflux Disease.” BMC Gastroenterol. 2010;10:7. Epub 2010 Jan 18. PMID: 20082715

[iii] Melvyn R Werbach, “Melatonin for the treatment of gastroesophageal reflux disease.” Altern Ther Health Med. 2008 Jul-Aug;14(4):54-8. PMID: 18616070

[iv] Fabio Nachman et al, “Gastroesophageal reflux symptoms in patients with celiac disease and the effects of a gluten-free diet.” Clin Gastroenterol Hepatol. 2011 Mar;9(3):214-9. PMID: 20601132

[v] Paolo Usai et al, “Effect of gluten-free diet on preventing recurrence of gastroesophageal reflux disease-related symptoms in adult celiac patients with nonerosive reflux disease.” J Gastroenterol Hepatol. 2008 Sep ;23(9):1368-72. PMID: 18853995

[vi] Mugur N Siddaraju, Shylaja M Dharmesh Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res. 2007 Mar;51(3):324-32. PMID: 17295419

[vii] R Dickman, E Schiff, A Holland, C Wright, S R Sarela, B Han, R Fass, “Clinical trial: acupuncture vs. doubling the proton pump inhibitor dose in refractory heartburn.” Aliment Pharmacol Ther. 2007 Nov 15;26(10):1333-44. PMID: 17875198

[viii] Karamanolis, G et al, “A glass of water immediately increases gastric pH in healthy subjects.” Dig Dis Sci. 2008 Dec;53(12):3128-32. PMID: 18473176

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.

The Little Known Miracle of Life: Fulvic acid

© 7th November 2019 GreenMedInfo LLC. This work is reproduced and distributed with the permission of GreenMedInfo LLC. Want to learn more from GreenMedInfo? Sign up for the newsletter here www.greenmedinfo.com/greenmed/newsletter
Reproduced from original article:
www.greenmedinfo.health/blog/little-known-miracle-life-fulvic-acid

Posted on: Thursday, November 7th 2019 at 12:30 pm

In the beginning, the earth was blessed with rich, fertile soil and lush vegetation. The soil was teaming with microbes — bacteria, fungi, and protozoa, to name a few. In the perfect cycle of life, microbes in the soil break down dead plant material and create substances and nutrients that nourish plants. When humans eat these plants, we enjoy the nutrients that they provide

The microbes in the soil make the hidden treasure called fulvic acid, the miracle of life. Fulvic acid is not a vitamin or a mineral and science cannot synthesize this substance in a laboratory. Our bodies require it for optimal health, but, we no longer get fulvic acid in adequate amounts from our food.

While the scientific research is growing in support of fulvic acid, there are less than 1,750 studies on PubMed.gov. One needs to dig around to find fulvic studies related to human benefits, but information and clinical evidence exists. This is not “just another supplement” but a powerful, life-giving substance that is quietly disappearing from our food and this is taking a toll on human health.

Fulvic acid has been reported to rejuvenate health and bring a multitude of benefits that are unmatched by any other natural substance.

Fulvic acid (FA) has been used for 3,000 years as Shilajit in Indian medicine.

Carrasco-Gallardo stated, “It is likely that the curative properties attributable to shilajit are provided by the significant levels of fulvic acids that shilajit contains, considering that fulvic acid is known by its strong antioxidant actions.” [v]

Historically, it was believed that fulvic acid/Shilajit had immune-modulating, antioxidant, diuretic, antihypertensive, and hypoglycemic benefits. [Winker][Trivadi] FA was used in diabetes, and to support the urinary, immune, digestive, cardiac, and nervous systems. [xxiv][i][ii][viii]

In Ayurveda literature it is called “rasayana” or rejuvenator, enhancing the quality of life. [xxxviii][xv]

Benefits

Fulvic acids can be found in compost or peat, lignite (brown coal which gives inferior fulvic acid) or ancient humic deposits that come from deep within the earth. Unlike other deposits formed over time deep below the earth’s surface, like coal, oil and natural gas, humic deposits are safe, providing powerful compounds that provide an impressive number of benefits for plants, humans and animals.

  • enhances the body’s absorption of vitamins and minerals [xxxix]
  • anti-inflammatory effects [iv][x][xiv][xxxvii][xxxiii]
  • anti-allergy [xl]
  • improves many aspects of eczema [xiv]
  • speeds skin healing [xxix][xiv][xxxvii]
  • enhances healing of wounds infected with drug-resistant pathogens [xliv][xlii]
  • protects against free radical damage as an antioxidant [iv][xxxiv][xxv]
  • anti-aging benefits [v]
  • improves gut flora and gut health [xxxix]
  • anti-diarrheal effects in animals and humans [xxvi]
  • improves energy levels [xxiv]
  • reduces oxidative stress [xxxix]
  • useful in treatment of osteoarthritis patients [xix]
  • shows antiviral activity, interfering with a virus’ ability to attach to a host cell, penetrate the host cell, and reproduce itself [xxii][xxviii]
  • displays antimicrobial activity [xxxvi]
  • displays antifungal activity [xiii][xxxii]
  • effective for the management of oral biofilm infections [xxxiii]
  • anti-aging effect on the skin, increasing fibroblast viability and reducing collagen degradation [xxi]
  • neuroprotective, improves memory and brain function [v][ix][xvi]
  • supports the immune system [xxxix]
  • stimulates metabolism [vi]
  • cleanses toxins and heavy metals from the body [xviii][vii][xxiii]
  • shows immunomodulatory activity [xxxi]
  • modulates homocysteine and pro-inflammatory mediators linked to atherosclerosis [xii]
  • promotes ulcer healing [xv][xxxi][xli]

Science cannot create fulvic acid

Fulvic acid offers a seemingly endless spectrum of benefits for human and animal health that would make any pharmaceutical company nervous. Fulvic acid cannot be made by man because it involves photosynthesis and humification. The process that creates fulvic acid requires nature’s recyclers, microorganisms, working in fertile, rich soil over a long period of time. Microbes decompose organic material (manure, compost, decaying plant material), in the soil to create nutrients for the plant including trace minerals, carbon, hydrogen, oxygen, nitrogen, phosphorus, and potassium. Microbes make the minerals in the soil into a useful form for plants and over time the microbes help create an amazing substance called humus (hyoo-muh s).

“Essentially, All Life Depends Upon The Soil … There Can Be No Life Without Soil And No Soil Without Life”

~ Charles E. Kellogg, head of the Soil Survey in the United States Department of Agriculture (USDA) for 37 years (1934-1971)

We never had to worry about getting enough fulvic acid, it simply existed in our soil and in our food, since time began. Fertile soil, and the microbial life within it, is a highly valuable natural resource that is critical for food security and for human health. Fertile soil is teaming with microbial life (it is interesting to note that there are more bacteria in two spoonfuls of rich, fertile soil than there are humans on planet earth). Sustainable farming practices that add compost and organic compounds to the soil help create a robust microbial community. Microbes are required for the cycle of life. They work to break down plant and animal matter, and over hundreds and thousands of years, fulvic acid is one of the end products of decomposition.

Common agricultural practices cause the loss of fulvic acid in food and the progressive deterioration of human health

Over the past 50 to 100 years, farming practices that sustained humans for thousands of years have drastically changed. Chemical fertilizers, herbicides and pesticides were created to increase crop yield, kill insects and control weeds. Modern agricultural practices increase the amount of food produced but the toll this has taken on soil microbes, plant nutrients and human and animal health is underappreciated.

While attempting to kill the pests and weeds and bolster plant production, the chemicals used in agriculture have inadvertently attacked friendly troops in the soil jungle.

The price of growing food this way is dramatically altering the natural recycling process required in nature, and the downstream effects on human health are mounting.

Fulvic acid may seem like “just another nutrient” that is declining in food, but it is actually the most important health-building compound because it is nature’s intended vehicle for transporting minerals and other nutrients into living cells.

Fulvic acid is nature’s answer to depleted food and too many toxins

Fulvic acid and humic acid are the key substances found in humus, the end result of the humification process where microbes in the soil break down once living matter, usually plants. It is believed that most of the health benefits attributed to Shilajit and humic substances are primarily due to the presence of fulvic acid. [v]

Fulvic acid is a very small molecule of low molecular weight. It is smaller than humic acid and penetrates the cell membrane and even the mitochondria. [v] Because fulvic acid bonds easily to nutrients like vitamins and minerals, it efficiently delivers nutrients where they are needed. Without fulvic acid our bodies’ ability to absorb nutrients (from food or supplementation) is diminished. [xxiv]

Fulvic acid’s small molecular weight coupled with the fact that it is water soluble at all pH levels, makes it superior for working in the body to:

  • deliver nutrients
  • bring antioxidant benefits
  • remove cellular waste products and toxins [xliii]

“You can trace every sickness, every disease and every ailment to a mineral deficiency.”

~Dr. Linus Pauling, awarded two Nobel Prizes

It is well known that minerals are required for a range of biochemical processes, but mineral deficiencies are epidemic. Our food lacks the vitamin and mineral content that it should have and most supplements do not absorb well enough to correct mineral deficiencies. The fulvic acid complex contains bioavailable minerals and trace elements that are desperately needed to combat widespread mineral deficiency in humans.

Fulvic acid is nature’s answer to the problem that man has created with over-farming and the production of processed foods.

Fulvic acid is a magical vehicle with 60 seats

The main components of fulvic acid are carbon, hydrogen and oxygen. These molecules in fulvic acid easily bond to other molecules and transport them through the body. It can possess over 70 trace elements, electrolytes, polyphenols, flavonoids, and essential amino acids.

Naturopathic physician, Dr. Daniel Nuzum, has been studying fulvic acid since 1998. He has used fulvic acid supplements with thousands of patients, and he researches and teaches extensively about fulvic acid. Very few doctors can make this claim, and have little to no experience with fulvic acid. Dr. Nuzum is an expert and he is able to communicate a difficult concept in a way that is easy to understand. “Fulvic acts like the FedEx truck and the garbage truck,” Dr. Nuzum explained. “It delivers nutrition into the cell and carries the trash (toxins & waste) out too!”

Fulvic acid has 60 receptor sites and because it is a carbon-based compound, it bonds easily to nutrients. Dr. Nuzum likens fulvic acid to a 60-passenger bus carrying nutrients in each of the 60 seats. The fulvic acid bus travels along to cells needing a nutrient package delivered. When it drops off the nutrient package, a seat is empty on the fulvic acid bus, so it picks up cellular waste and toxins, like the garbage man, and removes them from your system.

The missing puzzle piece

Many people are feeling the effects of low nutrient absorption, even in the presence of a good diet with regular intake of supplemental vitamins and minerals. This information about fulvic acid is the missing puzzle piece for many people seeking health. Whether you are fighting an infection, rebuilding health, or desire anti-aging strategies, add fulvic acid daily to help your body absorb and use needed nutrients. Take advantage of this powerful electrolyte and antioxidant.

Increase cellular voltage to increase health and energy

Fulvic acid has highly active carbon, hydrogen, molecular oxygen (available oxygen) and enables better electrolyte balance. It recharges cells allowing them to carry an electrical charge longer than normal and survive longer as a cell.

Your body must get enough electrons to keep cells at a healthy, healing voltage. While proper nutrition is a critical piece, it is not enough without voltage. This is where fulvic acid comes in to help. Fulvic acid brings molecular oxygen into the body, increasing the oxygen concentration.

CareyLyn Carter, biochemist and researcher said in an interview, “Fulvic acid molecules act like mini-batteries, going around and charging everything that it comes in contact with. It raises the voltage. When our cell’s membranes are fully charged, nutrients can get inside the cell more easily. When nutrients are inside cells they are available for biochemical processes that support our wellness.”

A closer look at fulvic acid for skin conditions, cancer and brain health

Fulvic acid improves skin conditions

Fulvic acid has anti-inflammatory properties.

A randomized, double blind, controlled study showed that fulvic acid significantly improves inflammatory skin conditions, like eczema with topical use, twice daily. It has been shown to be a safe and effective treatment for skin infections, and would be useful for humans and animals. [xiv]

It was found that fulvic acid reduces the pH of the skin, relieves the itch and improves the appearance of the skin rash. [xiv] FA relieves inflammatory skin conditions. [xxxvii]

Fulvic acid has antimicrobial properties and is a safe and effective topical treatment for skin infections. [xxxvi] Previously studies were cited supporting the use of fulvic acid and humic substances for wounds, rashes and fungal infections.

Fulvic acid has anti-cancer actions

Fulvic acid and the humic compounds are potential cancer chemopreventive agents [xxvii] and have been shown to induce cancer cell apoptosis. [xx]

Fulvic acid and humic substances have actions that combat certain cancer risk factors:

  • free radicals (fulvic acid acts as an antioxidant) [v][xliii][xxx]
  • toxins and heavy metals (fulvic acid bonds to and removes toxins and heavy metals) [xviii][vii][xxiii]
  • UV Radiation (fulvic acid is a photoprotective agent) [xxiv]
  • diabetes (humic substances showed hypoglycemic effects in animal studies) [xxxv]
  • inflammation (Winkler and Ghosh stated in a 2018 review study “there is substantial evidence to pursue FvA (fulvic acid) research in preventing chronic inflammatory diseases, including diabetes.”) [xxxix]

Huang showed that fulvic acid suppresses resistin. High levels of serum resistin are associated with several types of cancer and is thought to play a role in the development of colorectal cancer (CRC) by initiating the adhesion of colorectal cancer cells to the endothelium. FA inhibits the adhesion of CRC activated by resistin.[xvii]

Fulvic acid is neuroprotective and gives brain benefits

The Journal of Alzheimer’s Disease, published a study in 2011 that concluded, fulvic acid “has several nutraceutical properties with potential activity to protect cognitive impairment.” Researchers showed evidence that fulvic acid inhibited the formation of intracellular tangles of tau protein, seen in Alzheimer’s disease. [ix]

How to supplement with fulvic acid

Natural sources of fulvic acid

As discussed, conventional food production methods are destroying microbes in the soil, therefore it is imperative to eat the highest quality, organically grown food possible to increase the fulvic acid content and nutrient content of the food.

Organic vegetables

It is possible to get fulvic acid from plants, provided that they have been grown organically, in fertile soil, rich in humic substances. As you know from the earlier discussion on current agricultural practices, this is very difficult to find these days so most people benefit from taking fulvic acid as a supplement.

The best organic vegetables, in terms of fulvic acid, are the root vegetables like radishes, carrots and beets, but there is no way to know for sure that you are getting adequate fulvic acid from your diet.

Organic unsulphured blackstrap molasses from sugar cane

Another source of fulvic acid is organic unsulphured blackstrap molasses from sugar cane. This sweetener provides a good source of minerals and fulvic acid to aid in mineral absorption.

Fulvic acid supplementation

If you are taking any medication, please consult with your healthcare provider for contraindications. While fulvic acid is safe, there just are not enough studies on using fulvic acid with medication.

Take fulvic acid daily as part of your health rejuvenation regimen.

As fulvic acid supplements are being added to the market in a variety of forms, the consumer must be aware that not all fulvic acid supplements are equally safe. Fulvic acid is available in liquid preparations or powder supplements and capsules. It is believed that liquid forms are more bioavailable.

Here are a few things to consider when looking for a fulvic acid supplement:

  • Source. It is important to know that the fulvic acid was not obtained from brown coal (lignite) or deposits from a source contaminated with heavy metals like aluminumleadmercury and arsenic. Look for a product sourced from high quality humic shale.
  • Extraction. Look for fulvic acid extracted with pure, distilled water (not tap water) and no harsh solvents.
  • Water. Tap water containing chlorine and fluoride must never mix with fulvic acid or any of nature’s nutrients as harmful compounds can form. Find out if your fulvic acid provider uses tap water in their supplement preparation.
  • Potency. Will the supplier provide lab-verified data about their potency.
  • Preservative-free, ideally.
  • Glass packaging. Using any type of plastic in the extraction or bottling of fulvic acid is dangerous because the fulvic acid breaks plastic down. Plastic is a petroleum-based substance and will contaminate fulvic acid solutions.

Fulvic acid is a natural, water soluble substance that can be combined with liquids for oral consumption and it can be used topically. Follow directions from the manufacturer of the product you choose, and consider different options for use:

  • Combine fulvic acid with other plant compounds, like spirulina in water, to enhance the benefits.
  • Add fulvic acid to a smoothie or antioxidant superfood supplement drink.
  • Take fulvic acid with herbs, medicinal mushrooms or essential oils suitable for internal consumption.
  • Topically, use fulvic acid in a natural healing salve recipe including plant extracts known to support the skin’s healing.

Should you add fulvic acid to your daily health regimen?

The choice is yours. I believe that we need to supplement with fulvic acid now in order to harness the ability to get more nutrient absorption, increased detoxification, and increased electrical potential.

This may be the missing puzzle piece and help explain the dramatic increase in chronic disease that people of all ages are experiencing. The information on fulvic acid resonated with me the first time I began hearing about it. When that happens, I cannot keep silent – for who knows whether you and I have come to this information for such a time as this.

Originally published: 2019-11-06

Article updated: 2019-11-07

Tea With or Without Plastic?


Reproduced from original article:
https://articles.mercola.com/sites/articles/archive/2019/10/19/tea-bags-contain-plastic.aspx

Analysis by Dr. Joseph MercolaFact Checked
tea bags contain plastic

STORY AT-A-GLANCE

  • In a recent analysis of tea bags, researchers found that those sealed in plastic release billions of plastic particles with every cup that’s brewed. The plastic caused aquatic organisms to behave abnormally
  • Tea is an ancient beverage, recognized for the positive impact it has on health and the important role it plays in cultures around the world. While tea sold in plastic tea bags increases your toxic load, paper tea bags are not safer because they are infused with a known carcinogen
  • One study found humans excrete microparticles of plastic in stool, which is not removed during processing in wastewater treatment plants. These particles may then end up in municipal water supplies, giving a whole new meaning to recycling
  • There are significant health benefits to drinking tea, so it would be wise to continue the habit, while substituting loose leaf tea for tea bags. Tea may help develop better brain connections and improve cardiovascular health. It’s believed to also reduce beta-amyloid plaques found in Alzheimer’s disease and reduce the development of atherosclerotic plaques

Tea is important to people of many cultures around the world and it has been recognized for centuries as having dramatic and positive impacts on health. It is one of the most popular beverages worldwide, second only to water. There are several easy-to-grow herbs and plants that may be used to make tea at home, but most consumers choose a tea bag to brew their morning or afternoon beverage.

Chances are you’ve never given the tea bag a second thought. But some bags are made with a variety of plastics; researchers have found these leach out of the bag while it’s being brewed. Whether the bag is infused or sealed with plastic, exposure to heat may release microparticles into your tea.

As you become more aware of how plastic is finding its way into the water and food supply, it may spark questions about just how much you’re consuming. Plastics may be found in micro and nano sizes, some too small to be seen by the naked eye.

One key to understanding the size of plastic particles is their dynamic nature since the size and shape may change over time, or under environmental stress. Microplastics fall into a large range, defined as those from 5 mm to 0.1 micrometers (µm) in size, while nanoparticles are as small as 0.001 µm.1

To grasp the size of these plastic particles, note that 5 mm is roughly the size of five grains of salt.2 A hair shaft is approximately 100 µm, and the smallest microplastic is 1/10 the size of a single bacteria.3

How Much Plastic Would You Like With Your Tea?

A soothing cup of hot tea may be just what your body needs to boost phytochemicals and other nutrients. But did you know you may also be drinking 11.6 billion microplastic pieces and 3.1 billion nanoplastics with every cup of tea? Researchers from McGill University recently published the results of a study4 in which they analyzed plastic pollution released from tea bags.

They questioned whether plastic tea bags were releasing microplastics or nanoplastics after being submerged in hot water during the brewing process.5 They used four commercial products packaged in plastic tea bags. The tea leaves were removed to ensure any plastic particles in the tea did not contaminate the analysis of the tea bags.

The empty bags were then placed in hot water to simulate the brewing process. The water was evaluated using an electron microscope, in which the team found a single bag released billions of particles. The researchers report this contamination is at a level thousands of times greater than has been reported with other foods and beverages.

In addition to analyzing the amount of plastic released, the team also sought to determine the effect the particles may have on small aquatic organisms. Using water fleas, which are commonly used to model organisms in environmental studies, the researchers found that when treated with the microparticles and nanoparticles from the tea bags, the organisms survived but demonstrated anatomical and behavioral abnormalities.

Advertisement

Get 35% Off on an Organic Ashwagandha 90-Day Supply


Paper or Plastic?

The researchers acknowledged the effects on humans from drinking billions of particles of plastic remain unknown and they call for further study in this area.6 But, using paper tea bags is just as dangerous. Most tea bags and even coffee filters are treated with epichlorohydrin to reduce the chances of the product tearing during use.7

Epichlorohydrin is an industrial solvent and a known carcinogen; this chemical gets sprayed on some tea bags.8 In addition to the toxicity associated with the original chemical added to tea bags to reduce tearing, the California Environmental Protection Agency9 notes it degrades in water and may contain a certain impurity also known to cause cancer.

If you’ve been brewing your tea or coffee with bottled water in the hopes of avoiding contaminants commonly found in tap water, it is important to note most bottled water contains microplastics, which actually adds to the toxic burden from your tea bags.

Bottled water is often obtained from municipal water supplies, well water or spring water which is not regulated for polyfluorinated substances (PFAS) by the EPA. The FDA places responsibility for testing on the manufacturer without any oversight from a federal agency.

You May Be Eating One Credit Card in Plastic Every Week

In an analysis by the World Wildlife Fund10 (WWF) undertaken by the University of Newcastle in Australia, scientists found that on average, people are consuming approximately 5 grams of plastic every week in their food and water supply.

The researchers analyzed 52 studies, which highlighted a list of common foods and drinks. They found the average person may ingest as many as 1,769 particles of plastic every week in their water intake. The WWF reports that one-third of plastic waste ends up in the environment, with most of it being the result of mismanaged waste.

While plastic was initially advertised as reusable, half of all new plastic produced over the last 76 years has been manufactured in the most recent 16 years. As noted in the report, the largest source of ingested plastic microparticles is drinking water. Other foods and beverages with high levels include shellfish, salt and beer.11

When you add microparticles ingested from your tea bags, the weight multiplies quickly. The average person is consuming enough plastic every week — just from water — to make one credit card. When the amount of plastic in tea bags is factored into the equation, the charge against your health may come due soon.

Recycling Takes on a Whole New Meaning

A study evaluating plastic particles in human stool from the Medical University of Vienna was presented at the Annual United European Gastroenterology conference in October 2018. As reported in Salon Magazine:12

“Eight people from Finland, Italy, Japan, the Netherlands, Poland, Russia, the United Kingdom and Austria participated in the study. Each person kept a food diary the week before the stool sampling occurred which showed researchers that all participants were exposed to foods that were either wrapped in plastic, or they drank from plastic bottles. Six of the eight ate sea fish, too; none of them were vegetarians.”

Each participant’s stool was tested for 10 different types of plastics, nine of which were found. The impact plastic has on your gut has still not been established. Lead researcher Dr. Philipp Schwabl from the Medical University of Vienna found the results astounding and believes the initial indications are13 “that microplastics can damage the gastrointestinal tract by promoting inflammatory reactions or absorbing harmful substances.”

As human waste is flushed down the toilet and processed at wastewater treatment plants, the process may be ineffective according to results from one study. Researchers14 in the United Kingdom evaluated water supply from six rivers in the northern part of England. Their data showed a higher number of microplastics in receiving waters that were downstream of the wastewater treatment plants.

Researchers believe this confirms that treated sewage is a key source of microplastics. Following those microplastics even farther downstream, it is likely they end up in the environment and may someday become part of the municipal water supply.

Enjoy the Benefits of Loose Leaf Tea

There are a significant number of health benefits to drinking tea, so it would be wise to continue the habit, while substituting loose leaf tea for tea bags. As I shared in a previous article, drinking tea may help you develop better brain connections, improve your cardiovascular health, reduce beta-amyloid plaques found in the development of Alzheimer’s disease and reduce the development of atherosclerosis plaques.

While brewing loose leaf tea may require an additional step or two, the process is a simple art form. Here are a few simple guidelines for making the “perfect” cup of tea:

Directions

1.Bring water to a boil in a tea kettle (avoid using a nonstick pot, as they too can release harmful chemicals when heated).

2.Preheat your teapot to prevent the water from cooling quickly. Add a small amount of boiling water to the pot or tea cup that you’re going to steep the tea in. Ceramic and porcelain retain heat well. Cover the pot or cup with a lid. Add a tea cozy if you have one, or drape with a towel. Let stand until warm, then pour out the water.

3.Put the tea into an infuser or strainer or put loose leaf tea into the teapot. Steeping without an infuser or strainer will produce a more flavorful tea. Start with 1 heaping teaspoon per cup of tea and 1 for the pot. The robustness of the flavor can be tweaked by using more or less tea.

4.Add boiling water. Use the correct amount for the amount of tea you added (i.e., for 4 teaspoons of tea, add 4 cups of water). The ideal water temperature varies based on the type of tea being steeped:

White and green teas (full leaf) — Well below boiling (170 to 185 degrees F or 76 to 85 degrees C). Once the water has been brought to a boil, remove from heat and let the water cool for about 30 seconds for white tea and 60 seconds for green tea before pouring it over the leaves.

Oolongs (full leaf) — 185 to 210 degrees F or 85 to 98 degrees C

Black teas (full leaf) — Full rolling boil (212 degrees F or 100 degrees C)

5.Cover the pot with a cozy or towel and let it steep, following the instructions on the package. If there are none, here are some general guidelines. Taste frequently as you want it to be flavorful but not bitter:

Oolong teas — Four to seven minutes

Black teas — Three to five minutes

Green teas — Two to three minutes

6.Once the desired flavor has been achieved, remove the strainer or infuser. If using loose leaves, pour the tea through a strainer into your cup and any leftover into another vessel (cover with a cozy to retain heat).

Why 80% of Us Are Deficient In Magnesium

© 20th October 2019 GreenMedInfo LLC. This work is reproduced and distributed with the permission of GreenMedInfo LLC. Want to learn more from GreenMedInfo? Sign up for the newsletter here www.greenmedinfo.com/greenmed/newsletter
Reproduced from original article:
https://www.greenmedinfo.health/blog/magnesium-deficiency-symptoms-and-diagnosis
Posted on:  Thursday, October 17th 2019 at 6:45 am


Originally published on www.drsircus.com

Magnesium deficiency is often misdiagnosed because it does not show up in blood tests – only 1% of the body’s magnesium is stored in the blood

Most doctors and laboratories don’t even include magnesium status in routine blood tests. Thus, most doctors don’t know when their patients are deficient in magnesium, even though studies show that the majority of Americans are deficient in magnesium.

Consider Dr. Norman Shealy’s statements, “Every known illness is associated with a magnesium deficiency” and that, “magnesium is the most critical mineral required for electrical stability of every cell in the body. A magnesium deficiency may be responsible for more diseases than any other nutrient.” The truth he states exposes a gapping hole in modern medicine that explains a good deal about iatrogenic death and disease. Because magnesium deficiency is largely overlooked, millions of Americans suffer needlessly or are having their symptoms treated with expensive drugs when they could be cured with magnesium supplementation.

One has to recognize the signs of magnesium thirst or hunger on their own since allopathic medicine is lost in this regard. It is really something much more subtle then hunger or thirst but it is comparable. In a world though where doctors and patients alike do not even pay attention to thirst and important issues of hydration, it is not hopeful that we will find many recognizing and paying attention to magnesium thirst and hunger, which is a dramatic way of expressing the concept of magnesium deficiency.

Few people are aware of the enormous role magnesium plays in our bodies. Magnesium is by far the most important mineral in the body. After oxygen, water, and basic food, magnesium may be the most important element needed by our bodies; vitally important, yet hardly known. It is more important than calcium, potassium or sodium and regulates all three of them. Millions suffer daily from magnesium deficiency without even knowing it

In fact, there happens to be a relationship between what we perceive as thirst and deficiencies in electrolytes. I remember a person asking, “Why am I dehydrated and thirsty when I drink so much water?” Thirst can mean not only lack of water but it can also mean that one is not getting enough nutrients and electrolytes. Magnesium, Potassium, Bicarbonate, Chloride and Sodium are some principle examples and that is one of the reasons magnesium chloride is so useful.

A man with magnesium deficiency
Magnesium Torment (Deficiency)

You know all those years, when doctors used to tell their patients ‘its all in your heads,’ were years the medical profession was showing its ignorance. It is a torment to be magnesium deficient on one level or another. Even if it’s for the enthusiastic sport person whose athletic performance is down, magnesium deficiency will disturb sleep and background stress levels and a host of other things that reflect on the quality of life. Doctors have not been using the appropriate test for magnesium – their serum blood tests just distort their perceptions. Magnesium has been off their radar screens through the decades that magnesium deficiencies have snowballed.

Symptoms of Magnesium Deficiency

The first symptoms of deficiency can be subtle – as most magnesium is stored in the tissues, leg cramps, foot pain, or muscle ‘twitches’ can be the first sign. Other early signs of deficiency include loss of appetite, nausea, vomiting, fatigue, and weakness. As magnesium deficiency worsens, numbness, tingling, seizures, personality changes, abnormal heart rhythms, and coronary spasms can occur.

A full outline of magnesium deficiency was beautifully presented in a recent article by Dr. Sidney Baker. “Magnesium deficiency can affect virtually every organ system of the body. With regard to skeletal muscle, one may experience twitches, cramps, muscle tension, muscle soreness, including back aches, neck pain, tension headaches and jaw joint (or TMJ) dysfunction. Also, one may experience chest tightness or a peculiar sensation that he can’t take a deep breath. Sometimes a person may sigh a lot.”

“Symptoms involving impaired contraction of smooth muscles include constipation; urinary spasms; menstrual cramps; difficulty swallowing or a lump in the throat-especially provoked by eating sugar; photophobia, especially difficulty adjusting to oncoming bright headlights in the absence of eye disease; and loud noise sensitivity from stapedius muscle tension in the ear.”

“Other symptoms and signs of magnesium deficiency and discuss laboratory testing for this common condition. Continuing with the symptoms of magnesium deficiency, the central nervous system is markedly affected. Symptoms include insomnia, anxiety, hyperactivity and restlessness with constant movement, panic attacks, agoraphobia, and premenstrual irritability. Magnesium deficiency symptoms involving the peripheral nervous system include numbness, tingling, and other abnormal sensations, such as zips, zaps and vibratory sensations.”

“Symptoms or signs of the cardiovascular system include palpitations, heart arrhythmias, and angina due to spasms of the coronary arteries, high blood pressure and mitral valve prolapse. Be aware that not all of the symptoms need to be present to presume magnesium deficiency; but, many of them often occur together. For example, people with mitral valve prolapse frequently have palpitations, anxiety, panic attacks and premenstrual symptoms. People with magnesium deficiency often seem to be “uptight.” Other general symptoms include a salt craving, both carbohydrate craving and carbohydrate intolerance, especially of chocolate, and breast tenderness.”

Magnesium is needed by every cell in the body including those of the brain. It is one of the most important minerals when considering supplementation because of its vital role in hundreds of enzyme systems and functions related to reactions in cell metabolism, as well as being essential for the synthesis of proteins, for the utilization of fats and carbohydrates. Magnesium is needed not only for the production of specific detoxification enzymes but is also important for energy production related to cell detoxification. A magnesium deficiency can affect virtually every system of the body.

Water rich in magnesium can prevent magnesium deficiency
Like water we need magnesium everyday. There is an
eternal need for magnesium as well as water and when
magnesium is present in water life and health are enhanced.

One of the principle reason doctors write millions of prescriptions for tranquilizers each year is the nervousness, irritability, and jitters largely brought on by inadequate diets lacking magnesium. Persons only slightly deficient in magnesium become irritable, highly-strung, and sensitive to noise, hyper-excitable, apprehensive and belligerent. If the deficiency is more severe or prolonged, they may develop twitching, tremors, irregular pulse, insomnia, muscle weakness, jerkiness and leg and foot cramps.

If magnesium is severely deficient, the brain is particularly affected. Clouded thinking, confusion, disorientation, marked depression and even the terrifying hallucinations of delirium tremens are largely brought on by a lack of this nutrient and remedied when magnesium is given. Because large amounts of calcium are lost in the urine when magnesium is under supplied, the lack of this nutrient indirectly becomes responsible for much rampant tooth decay, poor bone development, osteoporosis and slow healing of broken bones and fractures. With vitamin B6 (pyridoxine), magnesium helps to reduce and dissolve calcium phosphate kidney stones.

Magnesium deficiency may be a common factor associated with insulin resistance. Symptoms of MS that are also symptoms of magnesium deficiency include muscle spasms, weakness, twitching, muscle atrophy,  an inability to control the bladder, nystagmus (rapid eye movements), hearing loss, and osteoporosis.  People with MS have higher rates of epilepsy than controls.  Epilepsy has also been linked to magnesium deficiencies.[1]

Another good list of early warning symptoms suggestive of magnesium insufficiency:

  • Physical and mental fatigue
  • Persistent under-eye twitch
  • Tension in the upper back, shoulders and neck
  • Headaches
  • Pre-menstrual fluid retention and/or breast tenderness

Possible manifestations of magnesium deficiency include:

  • Low energy
  • Fatigue
  • Weakness
  • Confusion
  • Nervousness
  • Anxiousness
  • Irritability
  • Seizures (and tantrums)
  • Poor digestion
  • PMS and hormonal imbalances
  • Inability to sleep
  • Muscle tension, spasm and cramps
  • Calcification of organs
  • Weakening of the bones
  • Abnormal heart rhythm

Severe magnesium deficiency can result in low levels of calcium in the blood (hypocalcemia). Magnesium deficiency is also associated with low levels of potassium in the blood (hypokalemia). Magnesium levels drop at night, leading to poor REM (Rapid Eye Movement) sleep cycles and unrefreshed sleep. Headaches, blurred vision, mouth ulcers, fatigue and anxiety are also early signs of depletion.

image

We hear all the time about how heart disease is the number one health crisis in the country, about how high blood pressure is the “silent killer”, and about how ever increasing numbers of our citizens are having their lives and the lives of their families destroyed by diabetes, Alzheimer’s disease, and a host of other chronic diseases.

Signs of severe magnesium deficiency include:

  • Extreme thirst
  • Extreme hunger
  • Frequent urination
  • Sores or bruises that heal slowly
  • Dry, itchy skin
  • Unexplained weight loss
  • Blurry vision that changes from day to day
  • Unusual tiredness or drowsiness
  • Tingling or numbness in the hands or feet
  • Frequent or recurring skin, gum, bladder or vaginal yeast infections

But wait a minute, aren’t those the same symptoms for diabetes? Many people have diabetes for about 5 years before they show strong symptoms. By that time, some people already have eye, kidney, gum or nerve damage caused by the deteriorating condition of their cells due to insulin resistance and magnesium deficiency. Dump some mercury and arsenic on the mixture of etiologies and pronto we have the disease condition we call diabetes.

Magnesium deficiency is synonymous with diabetes and is at the root of many if not all cardiovascular problems.

Magnesium deficiency is a predictor of diabetes and heart disease both; diabetics both need more magnesium and lose more magnesium than most people. In two new studies, in both men and women, those who consumed the most magnesium in their diet were least likely to develop type 2 diabetes, according to a report in the January 2006 issue of the journal Diabetes Care. Until now, very few large studies have directly examined the long-term effects of dietary magnesium on diabetes. Dr. Simin Liu of the Harvard Medical School and School of Public Health in Boston says, “Our studies provided some direct evidence that greater intake of dietary magnesium may have a long-term protective effect on lowering risk,” said Liu, who was involved in both studies.

The thirst of diabetes is part of the body’s response to excessive urination. The excessive urination is the body’s attempt to get rid of the extra glucose in the blood. This excessive urination causes the increased thirst. But we have to look at what is causing this level of disharmony. We have to probe deeper into layers of cause. The body needs to dump glucose because of increasing insulin resistance and that resistance is being fueled directly by magnesium deficiency, which makes toxic insults more damaging to the tissues at the same time.

When diabetics get too high blood sugars, the body creates “ketones” as a by-product of breaking down fats. These ketones cause blood acidity which causes “acidosis” of the blood, leading to Diabetic Ketoacidosis (DKA), This is a very dangerous condition that can lead to coma and death. It is also called “diabetic acidosis”, “ketosis”, “ketoacidosis” or “diabetic coma”. DKA is a common way for new Type 1 diabetics to be diagnosed. If they fail to seek medical advice on symptoms like urination, which is driving thirst they can die of DKA.

Oral magnesium supplements reduce erythrocyte[2] dehydration.[3] In general, optimal balances of electrolytes are necessary to maintain the best possible hydration. Diabetic thirst is initiated specifically by magnesium deficiency with relative calcium excess in the cells. Even water, our most basic nutrient starts having a hard time getting into the cells with more going out through the kidneys.

Autism and Magnesium Deficiency

When dealing with autism spectrum and other neurological disorders in children it is important to know the signs of low magnesium: restless, can’t keep still, body rocking, grinding teeth, hiccups, noise sensitive, poor attention span, poor concentration, irritable, aggressive, ready to explode, easily stressed. When it comes to children today we need to assume a large magnesium deficiency for several reasons.

1) The foods they are eating are stripped of magnesium because foods in general, as we shall see below are declining in mineral content in an alarming way.

2) The foods many children eat are highly processed junk foods that do not provide real nutrition to the body.

3) Because most children on the spectrum are not absorbing the minerals they need even when present in the gut. Magnesium absorption is dependent on intestinal health, which is compromised totally in leaky gut syndromes and other intestinal problems that the majority of autism syndrome disorders.

4) Because the oral supplements doctors rely on are not easily absorbed, because they are not in the right form and because magnesium in general is not administered easily orally.

Modern medicine is supposed to help people not hurt them, but with their almost total ignorance of magnesium doctors end up hurting more than they help for many of the medical interventions drive down magnesium levels when they should be driving them up. Many if not most pharmaceutical drugs drive magnesium levels into very dangerous zones and surgery done without increasing magnesium levels is much more dangerous then surgery done with.

The foundation of medical arrogance is actually medical ignorance and the only reason ignorance and arrogance rule the playing field of medicine is a greed lust for power and money. Human nature seems to be at its worst in modern medicine when it should be at its best. It is sad that people have to suffer needlessly and extraordinarily tragic that allopathic medicine has turned its back on the Hippocratic Oath and all that it means.

For additional research on Magnesiun Deficiency, read the following articles:

Consult our Magnesium research database on the therapeutic role of magnesium in over 190 conditions.


References

[1] https://www.nhfw.info/magnesium.html

[2] Red blood cells are also known as RBCs, red blood corpuscles (an archaic term), haematids or erythrocytes (from Greek erythros for “red” and kytos for “hollow”, with cyte translated as “cell” in modern usage). The capitalized term Red Blood Cells is the proper name in the US for erythrocytes in storage solution used in transfusion medicine.

[3] J. Clin. Invest. 100(7): 1847-1852 (1997). doi:10.1172/JCI119713. The American Society for Clinical Investigation

Originally published: 2018-02-12  

Article updated: 2019-10-17

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.

Cancer and the New Biology of Water


Reproduced from original article:
https://articles.mercola.com/sites/articles/archive/2019/10/13/structured-water.aspx

Analysis by Dr. Joseph Mercola Fact Checked – October 13, 2019
Note: Video not available on this site.
To view video, please go to original article above.

STORY AT-A-GLANCE

  • In “Cancer and the New Biology of Water,” Dr. Thomas Cowan explains why cancer is not a problem of oncogenes but rather a problem involving the cytoplasm — the structured water — of the cell
  • Mitochondrial defects are an integral part of the breakdown of the structure in the water, which then triggers the formation of cancer
  • Lifestyle strategies that will help restructure the water in your cells, thereby helping prevent cancer include eating a ketogenic diet and exposing your body to sunlight and near-infrared light such as near-infrared sauna
  • Other strategies include grounding to the earth by walking barefoot, posing yourself to the biofields of other biological entities, such as the touch of other humans and animals, and hyperbaric oxygen therapy
  • Mistletoe therapy stimulates your fever response. It’s an immunostimulating medicine that also works like a chemo drug

Dr. Thomas Cowan is a practicing physician, founding board member and vice president of the Weston A. Price Foundation.

I’ve previously interviewed Cowan on a number of different topics, including the link between vaccines and autoimmune disease, the use of low-dose naltrexone for autoimmune disease and novel treatments for heart disease. Here, we discuss his latest book, “Cancer and the New Biology of Water.”

“I wrote a series of three books. The first one on the heart, the second one on vaccines and autoimmunity and then this one on cancer. As I got into it, I realized it was all about water,” Cowan says.

“The first book was basically two premises: One is that the heart doesn’t pump the blood. The reason for the movement of the blood in your body is not because there’s a propulsion by the heart [but] because of the dynamics of water …

Then I got into the vaccine book and what childhood illness means. That took me deeper into what cells are made of. Somehow it hit me that the whole problem of cancer is a cytoplasmic, i.e., water problem.

It became like the culmination of this series of writing and thinking about human biology, biology in general, and how wrong we have the whole thing, basically.”

Cancer and the Biology of Water

In 1971, President Nixon declared war on cancer. As noted by Cowan, we had just discovered the oncogene at that time, which was thought to be the reason for why people had cancer.

In the decades since, vast sums of money have been spent on cancer research. Were oncogenes the correct target, the war on cancer should have been won by now, yet we’re no closer to a cure today than we were back then. Cowan cites research by the Australian government, which concluded that improvement in cancer statistics as a result of chemotherapy is 2.3%.

“That’s an abysmal return on a $500 billion investment … Probably the costliest endeavor humans have ever undertaken, except maybe war,” Cowan says. “What’s the problem? The problem I submitted in the book is that cancer is not a problem of oncogenes. It isn’t even a problem of the DNA. It isn’t even a problem of the nucleus …

There have been a number of studies over the years where they transplant the nucleus from a healthy cell into another healthy cell and the progeny are normal, as you would expect.

But then they take the nucleus out of a cancer cell, where these oncogenes [are], the DNA that supposedly cause cancer, and put that into a healthy cytoplasm, the progeny are normal. When they take a normal nucleus and put it into the cytoplasm of a cancer cell, it turns the progeny cancerous.

That simple experiment tells you exactly where in the cell the problem of cancer lies, which is in the cytoplasm. The cell has two parts. Basically, it’s a lipid biomembrane that has a nucleus and a cytoplasm. The cytoplasm is basically structured water or a gel.

Now we know that the cytoplasm is the site of cancer. The events in the nucleus are a consequence of degeneration of the cytoplasm, not the other way around.

When these researchers did this, and identified clearly that the site of the cancer problem is in the cytoplasm, they postulated that something in healthy cytoplasm must be able to heal the mutations of the DNA in the nucleus, which there’s no evidence for.”

Advertisement

Get Over 40% Off on Select Items Daily


The Cytoplasm’s Role in Cancer

Cowan argues that the real problem in cancer lies in the structured water of the cell, i.e., the cytoplasm. Similarly, Thomas Seyfried, Ph.D., whom I’ve interviewed on this topic as well, believes the studies Cowan mentioned above reveal the problem is rooted in the mitochondria, which also reside in the cytoplasm.

Mitochondrial dysfunction is certainly one aspect, Cowan admits, but more specifically, he believes mitochondrial defects are an integral part of the breakdown of the structure in the water, which then triggers the formation of cancer.

“When you look at what the function of the mitochondria is — which is essentially to produce adenosine triphosphate (ATP) — and you see what the role of ATP is and how integral ATP is to the structuring of the water in the cytoplasm, then you begin to see the connections between the mitochondrial dysfunction … [and the] deterioration of the cytoplasmic water that leads to cancer.”

Oftentimes, cancer can be palpated (provided the tumor is large enough). The tumor turns into a palpable lump because the density of the cells is too high, Cowan says. The cells are essentially clumped together, and they’ve lost their normal spatial orientation.

All cells have a certain spatial orientation because there’s an electrical charge around the cell. When two cells start coming together, the charge repels them apart. This allows all the cells to remain at an appropriate distance from each other. This distance varies depending on the cells and organs in question, but all tissues have a spatial orientation that allows the tissue to remain healthy and normal.

Structured Water Is Responsible for Cellular Charge

Conventional medicine says that the charge around each cell comes from the distribution of sodium and potassium across the cell membrane. However, Cowan points out that experiments by cell physiologist and biochemist Gilbert Ling, performed more than three decades ago, showed that for the sodium-potassium pump to be responsible for the creation of this charge, the cell would need about 30 times the energy at its disposal.

So, according to Cowan, this belief, while being a cornerstone of modern biology, is little more than a myth. Something else causes the charge, but what? Cowan answers that question with the following explanation:

“It comes about because in the cytoplasm is a mesh network of water, which, by some genius of nature, is so constituted that it, by itself, it traps potassium and excludes sodium … The proper healthy grid, mesh or structuring of the water, in itself, is the pump. No energy needed, just like the heart.

The whole idea of a stupid pump pushing is ridiculous. It’s done by the miracle of water. The charge distribution, the spatial orientation of a cell, is because of the structuring of the water. That’s one.

The second thing is the other hallmark of cancer cells: They all have an abnormal number of chromosomes. It’s called aneuploidy, as opposed to a diploid cell, which means humans have 46 chromosomes. If you get an abnormal number, that’s an abnormal cell we call cancer.

How does that happen? It happens because of events in the cytoplasm, which pulls the two chromosomes apart and makes new copies of mitosis. It doesn’t happen properly because the milieu in the cytoplasm, that structured water, is disturbed.

Therefore, you get all these errors of mitosis, and the energy used for mitosis is deficient. That’s because of the mitochondrial problem. You get errors in chromosome replication called aneuploidy. When you get an aneuploid cell that has an abnormal spatial orientation, that’s called a cancer cell.”

How to Restructure the Water in Your Cells

Once you understand the importance and influence of the cytoplasm, the structured water inside your cells, in the development of cancer, the next question becomes: How do you restructure that water? A significant portion of Cowan’s book covers this important topic.

To illustrate how structured water is made, he compares it to Jell-O. Jell-O is made by mixing gelatin proteins with water and then adding heat. The heat unfolds the proteins, exposing their hydrophilic surfaces, which then grab onto the water.

As the mixture cools, it forms a gel, “which is basically identical to the state that the cytoplasm is in,” Cowan says. To structure the water in your cells and basically mimic this Jell-O making procedure, you can:

  • Eat a cyclical ketogenic diet — When fats are metabolized in your mitochondria, they create deuterium depleted water (DDW), which is hydrogen-rich. The more hydrogen you get, the more ATP your cells generate, which in turn allows your cells to create more structured water
  • Regularly expose much of your skin to sunlight
  • Regularly expose your skin to near-infrared light, such as a near-infrared sauna or a heat lamp bulb. Not only does it restructure water, but it also detoxifies your cells by creating sweating, which purifies the cytoplasm
  • Expose yourself to the biofields of other biological entities, such as the touch of other humans and animals

Now, ATP is instrumental for protein unfolding — which is an integral part of the process of creating structured water — and if you have an ATP deficiency, “as happens when you have mitochondrial disease, it’s like trying to make Jell-O without heat,” Cowan says.

“You get clumps of dysfunctional proteins with water that can’t be structured. That’s what you see with cancer cells … If you want to have properly structured water, which then creates healthy cell division and healthy spatial orientation in the cells, you need sunlight, earth and human touch — the biofields of other biological entities, especially those who wish you well, so to speak, like your dog.”

Another alternative is hyperbaric oxygen therapy, although this is not something most people will be able to do at home. By providing more oxygen to the tissues at increased partial pressure, the oxygen is pushed into the mitochondria, allowing them to generate more ATP, which in turn allows your cells to create more structured water.

Mistletoe Therapy

In his book, Cowan also discusses mistletoe therapy, which he recommends almost universally for his cancer patients. He expounds on the benefits of this therapy as follows:

“Cancer is growing and parasitizing you, sucking your nutrients, just like the mistletoe sucks the nutrients from the oak tree. But there’s a central difference, which is the mistletoe has learned to cooperate with the oak tree, and so each do better together than they would do alone, whereas in cancer, the tumor has parasitized you and you do worse.

What we need is a situation where we bring back that cooperation … This is not a survival of the fittest … That’s not how it works in nature. Nature is a cooperative venture … Mistletoe tells you to see it like that. Now, that’s the metaphor.

[Mistletoe] stimulates fever response, so it is an immunostimulating medicine. It stimulates white blood cells. It stimulates all these aspects of immune response. It stops cells from growing, so it works like a chemo drug, as well … We want the simulation, the purification, the detoxification that happens with fever therapy. Mistletoe does that.”

The idea that fever is a healing aid goes back to a cancer treatment developed in the 1890s by William Coley, a bone surgeon. The treatment, which involves giving isolated proteins from the erysipelas bacteria at a specific dose to induce a fever, is known as “Coley’s toxin.”1

“Around 1989, for I don’t know what reason, I get in the mail a book from Coley’s granddaughter about 2,000 cases he treated and the results — about 60% of them, stage 4. All different kinds of cancer were cured by Coley’s toxins. It’s very well documented.

It was the main adjunct of cancer therapy in the United States for a couple of decades. It was used up until the ’60s. Many, many papers written about it, peer-reviewed journals. There’s no doubt that it was more effective than any adjunctive therapy for cancer we have today.

In a sense though, it’s a blueprint. When you talk about hyperthermia, the problem is it doesn’t work as well as Coley’s toxins. I think the reason for that is [hyperthermia] doesn’t turn on your innate cellular immune system. It’s just heating up your cells.

I’m not saying that something good doesn’t happen from heating up your cells, but it’s not the same. Coley’s was a way of internally generating the temperature, and so is mistletoe, although mistletoe isn’t as dramatic as Coley’s toxins …

[Today, Coley’s toxin] is not available anywhere. It’s very sad. There should be a way of stimulating fever. I had occasion to use it a little bit years ago. You could basically generate any temperature you want. It’s pretty rigorous therapy. You get shakes and chills and not everyone wants to do that. But if you do that, you have a dramatic detoxification-purification response …

None of these strategies are a magic bullet. The point I’m trying to make is that healthy cytoplasm, which is basically a structured water gel, that’s the key focus … All those [factors discussed earlier] contribute to the quality of the gels that you’re going to produce. That’s what good health is.”

More Information

Cowan’s book ends with the story of Sleeping Beauty. “It’s what we tell children to teach them how the world works,” he says. Sleeping Beauty, a princess, is bewitched by an evil witch, which in fairytales always illustrates the materialistic side of life.

“When you’re bewitched by materialism … you fall into chaos and disrepair has happened in the story. Something has to come along to wake you up, not to a new way of seeing, as they say in the story, but to your true nature.

That’s where we’re at now. We’re living out the story of Sleeping Beauty. We’re bewitched by materialism and we can’t see our true nature. That’s become a real problem. [Getting out of that matrix involves] an interesting combination of all these techniques that we’re talking about …

Cyclical ketosis, sunlight, walking in the ocean, infrared saunas … fever therapy, bringing back therapies like Coley’s toxins. There’s another side too, which is to change our minds … Somehow, we have to change our mind and … see the world as it is.

I often tell people and patients, ‘If you see the world from a materialistic point of view and you realize that the matter we’re talking about is made of atoms, which are, themselves, 99% space, just empty, so how does that work? It’s an illusion.’ Once we see that we’re essentially crystallized energy, then you start to wake up.

The most hopeful thing I think I can tell people is that once you begin to open your mind, there’s more out there than was taught in school or that your doctors tell you. Somehow the world seems to feed you information or give you clues as to where to go next.

You don’t need me to tell you what to do or where to go next. Somehow it just happens. I don’t know if you would agree, but in my life, once you open yourself to this possibility, to me, it’s like the spiritual world comes in to offer a hand. The next thing you know, you meet this person. Next thing you know, you [learn] things that you didn’t know before.

You just keep opening your mind. If we keep doing that, we can build a different world. You don’t have to do anything. You just have to stop not doing things, believing that there’s nothing there.”

To learn more, be sure to pick up a copy of Cowan’s book, “Cancer and the New Biology of Water.” I definitely recommend it and all the resources in there. It’s a great read. Cowan tells a good story, which makes his books easy to digest. “I hope that it catalyzes some institution, some person — somebody — to say, ‘We’ve got to do things differently because this isn’t working,” Cowan says.

Sources and References

Water Poisoning Alerts Hidden From Public


Reproduced from original article:
https://articles.mercola.com/sites/articles/archive/2019/10/09/legionnaires-disease-in-drinking-water.aspx

Analysis by Dr. Joseph Mercola – Medically reviewed by Dr. Stephanie Seneff  Fact Checked – October 09, 2019
legionnaires disease in drinking water

STORY AT-A-GLANCE

  • In a 2013 report, the American Society for Civil Engineers warned that most of the drinking water infrastructure across the U.S. is “nearing the end of its useful life,” yet little has been done to address the situation
  • Recent media coverage make it clear that many toxic water incidences are covered up and hidden from the public, which at times has had lethal consequences
  • In a September 25, 2019, report, the Office of Inspector General criticizes the EPA and water utilities around the country for their failure to provide consistent and accurate reporting of drinking water risks
  • Aside from Flint, Michigan, and Newark, New Jersey, U.S. cities known to have exceeded EPA action limits for lead include Portland, Oregon; Pittsburgh, Pennsylvania; Providence, Rhode Island; Passaic, New Jersey and Tualatin Valley, Oregon
  • Outbreaks of Legionnaires’ disease were covered up in Flint, Michigan, for at least two years, and in a Loma Linda, California, VA hospital, Legionella contamination was covered up in 2017, putting patients and staff at risk

Each year, red flags over toxic drinking water are raised across the U.S., with reasons varying from location to location. One major problem is aging water pipes, which have become an increasingly common source of toxic exposure.1

In a 2013 report,2 the American Society for Civil Engineers warned that most of the drinking water infrastructure across the nation is “nearing the end of its useful life,” yet little has been done to address our crumbling infrastructure in the years since.

Making matters worse, recent media coverage make it clear that many toxic water incidences are covered up and hidden from the public, which at times has had lethal consequences.

In short, if you’re counting on your local water utility to warn you about problems with your water supply, you could be placing your health at risk. Your best bet is to be proactive and make sure you filter your drinking water to the best of your ability, no matter where you live.

EPA Gets Failing Grade for Water Alerts

In a September 25, 2019, report,3,4 the Office of Inspector General (OIG) — which is part of the U.S. Environmental Protection Agency yet independent as it receives separate funding — criticizes the EPA and water utilities around the country for their failure to provide consistent and accurate reporting of drinking water risks. The OIG’s investigation identified several problems that could place public health at risk from contaminated water supplies, including the following:5

Some primacy agencies (agencies with the primary responsibility for enforcing water regulations) are not consistently fulfilling their responsibility to enforce public notice requirements. Specifically, violations are not consistently reported and tracked, and public notices are not consistently issued.
The EPA’s oversight protocols do not cover all public notice requirements and as a result, some primacy agencies do not know whether the public water systems under their supervision are properly notifying consumers when safety violations occur.
All public water systems are not held to the identical compliance standards by the EPA and primacy agencies.
Primacy agencies use inconsistent methods to record violations and identify problems with public notice in the national drinking water database. Because the EPA’s information about public water systems’ compliance with public notice requirements is incomplete, the agency cannot properly monitor compliance.
The EPA’s public notice guidance given to primacy agencies and public water systems is out of date and does not fully reflect current regulations.
Public water systems lack accurate guidance about current tools available to provide public notices and may therefore “miss opportunities to efficiently inform consumers about drinking water problems.”

According to the OIG report:6

“We made nine recommendations, including that the EPA require primacy agencies to comply with oversight requirements related to public notice and to follow data reporting requirements.

We also recommended that the agency update public notice guidance, define the acceptable methods and conditions under which notices can be delivered electronically, and improve public notice violation information in the national drinking water database.

The EPA provided acceptable corrective actions and estimated completion dates for six recommendations. Three recommendations are unresolved, with resolution efforts in progress, because the action official for these recommendations, the Deputy Administrator, did not respond to our draft report.”

The three recommendations that remain unresolved include:7

  1. Requiring EPA regional administrators to comply with public notice requirements.
  2. Requiring regional administrators to verify that primacy agencies within each region fully implement oversight of public notice responsibilities.
  3. Directing each region to require primacy agencies to adhere to requirements for accurate quarterly entry of public notice violation data into the Safe Drinking Water Information System.

Lead-Tainted Water Becoming Nationwide Concern

The fact that public warnings about water safety violations are not being consistently issued is a grave concern, seeing how prevalent water contamination around the U.S. has become.

A September 11, 2019, article8 in The Atlantic addresses the growing problem of lead-contaminated water. Aside from the well-publicized lead controversies in Flint, Michigan, and Newark, New Jersey, U.S. cities known to have exceeded EPA action limits for lead include Portland, Oregon; Pittsburgh, Pennsylvania; Providence, Rhode Island; Passaic, New Jersey and Tualatin Valley, Oregon.

In Newark, after lead levels were found to exceed federal limits three times in a row in 2018, the city issued water filters to some of its residents. Many others have been advised to drink bottled water ever since. However, evidence suggests the problem goes back far longer than 2018. As reported by The Atlantic:9

“A sample of Newark children under the age of 6 tested in 2016 found that about a quarter had measurable levels of lead in their blood. The following year, more than 22 percent of drinking-water samples tested in the city were found to have levels of lead exceeding the federal standard.”

Fortunately, Newark is now in the process of replacing all lead service lines. The same cannot be said for many other areas, though.

According to a Natural Resources Defense Council (NRDC) report10 issued in 2018, EPA data showed nearly 30 million Americans drank water that violated the EPA’s lead and copper thresholds between January 2015 and March 2018. Of those, an estimated 5.5 million were drinking water with lead levels exceeding the EPA’s action level for lead, set at 15 parts per billion (15 ppb).

Water Infrastructure Is Crumbling

As noted in the NRDC’s report, 15 ppb is not a “safe” level, but rather the level at which mandatory action is required to reduce the amount of lead in the water to avoid health complications. What’s more, the 15 ppb action level is based on adult metabolism, not children’s. In reality, no amount of lead is considered safe at any age, even by the EPA.

This goes right back to what I mentioned in the beginning — that drinking-water infrastructure in the U.S. is breaking down, and the appropriate investments have not been made to keep the infrastructure safe.

In Newark, many of the service lines are a century old! Water treatment technology is also lagging behind in many areas. As noted in The Atlantic:11

“According to [NRDC senior director for health programs, Erik] Olson, replacing all the lead service lines in the U.S. could cost $30 billion.

It’s a hefty-seeming sum, ‘but that’s the kind of investment that society made when these water systems were being built 100-plus years ago,’ he says. ‘We have been living off of the investments of our great-grandparents for decades.'”

Glyphosate Increases Lead in the Water

Historically, for five decades Flint, Michigan, had received its water from Detroit, originating in Lake Huron. However, in 2013, a tragic decision was made to temporarily supply the city with water from the Flint River as a cheaper alternative until a new water pipeline could be built coming directly from Lake Huron.

A study conducted by Marc Edwards of the Flint Water Study research group demonstrated that water from the Flint River was 19 times more corrosive to lead than the original water from Detroit.

The Flint River and its tributaries drain an agricultural region in Genesee and Saginaw counties. Soybeans, corn, wheat and hay are the main crops in Genesee county. Glyphosate is heavily used on these crops, both to control weeds and for dry-down at harvest.

Furthermore, Saginaw County is a major supplier of sugarbeets, which are genetically engineered to be Roundup Ready. The river has also served as an unofficial waste disposal site for refuse from local industries on its shores, including meat-packing plants and paper mills.

A likely reason why the water was so effective at stripping lead from the pipes is glyphosate contamination in the water. The first patent on glyphosate, issued in 1961, was for an application that involved its use as a descaling agent to clean mineral deposits from pipes and boilers in residential and commercial hot water systems.12

So, the glyphosate essentially chelated the lead out of the pipes and transferred it into the water. Once the water was consumed, the lead detached from the glyphosate in the person’s stomach, thus contributing to lead toxicity.

A recent Frontline documentary, “Flint’s Deadly Water,”13 points out that part of the issue was a water treatment plant that had been out of operation for many years and was not functioning properly when the water supply was first switched. Chlorine treatment is effective for breaking down glyphosate nonenzymatically, but was likely inadequate under the unusual circumstances of this water switch.

Water Fluoridation Also Worsens Lead Crisis

The increased presence of lead in drinking water is made all the worse by the fact that most areas are still adding fluoride to their municipal water supplies.14,15 Research shows fluoride actually leaches lead from water pipes with lead in them, thereby increasing the levels in the water. As reported by Fluoride Action Network in 2005:16

“A combination of chloramines and fluorosilicic acid, especially with extra amounts of ammonia, leaches lead from meters, solder and plumbing systems, according to Richard P. Maas, Ph.D. and Steven C. Patch Ph.D., co-directors of the Environmental Quality Institute at the University of North Carolina, Asheville.

Chloramine, a combination of chlorine and ammonia, is a water supply disinfectant. Fluorosilicic acid, the chemical used by over 91% of U.S. fluoridating communities, attempts to improve dental health in those who drink it … Maas said, ‘Tests showed lead levels three and four times higher in water with that combination of chemicals …’

These new findings may help explain earlier published, peer-reviewed research by Roger Masters, Ph.D. of Dartmouth College and Myron Coplan. Their studies show a link between water fluoridation status and elevated blood lead in children.

Elevated blood lead levels are linked to developmental delays in children under age six and fetuses. Lead can adversely affect almost every organ and system in the body. The most sensitive is the central nervous system, particularly in children. Lead also damages kidneys and the reproductive system.”

Legionnaires’ Disease Cover-Up in Flint

Recent media reports also warn that cases of Legionnaires’ disease — a severe and potentially lethal form of pneumonia — have been covered up, putting people’s health at serious risk. The Legionella bacterium thrives in warm, fresh water and is typically contracted by inhaling contaminated water vapor. It is not contagious between individuals.

In Flint, Michigan, a widespread outbreak of Legionnaires’ disease coincided with the city’s switch to Flint River water.17 In this case, residents were left in the dark not just about rising lead levels in their water, but also about the presence of this deadly bacterium.

As reported by PBS,18 it was one of the largest outbreaks of Legionnaires’ in U.S. history, killing 12 and sickening more than 90 people — at least those are the official numbers.

Unofficially, a review of death records suggests the death toll may have been far greater, as 115 residents died from pneumonia during the years of the outbreak, which lasted from 2014 through 2016. According to PBS:19

“Epidemiologists and infectious disease specialists told us that some of those people could have been Legionnaires’ disease cases that were left undiagnosed, untreated and, ultimately, uncounted.”

Disturbingly, NBC reports20 clusters of Legionnaires’ are still popping up in Flint to this day. Between January 1 and August 30, 2019, there were 16 confirmed cases.21 Flint isn’t the only place where the Legionella bacterium is wreaking havoc, though — and being covered up by authorities.

Legionnaires’ Is Being Covered Up Elsewhere as Well

A May 6, 2019, article22 in The Sun reported the U.S. Department of Veterans Affairs covered up Legionella contamination at a Loma Linda hospital in 2017, putting both patients and staff at grave risk.

Between 2017 and 2018, the hospital’s water supply tested positive for Legionella no less than 33 times, yet staff were not informed of the findings until June 2018, after a whistleblower complaint had been filed. As reported by The Sun:23

“Department of Veterans Affairs officials failed to notify physicians in 2017 about Legionella bacteria found at the VA Medical Center in Loma Linda, posing a public health danger and possibly causing at least one doctor to contract potentially fatal Legionnaires’ disease, according to a federal report …

The 26-page VA report substantiates a whistleblower complaint filed in February 2018 with the U.S. Office of Special Counsel by two doctors and six nurses at the Jerry L. Pettis Memorial VA who alleged hospital officials concealed the Legionella discovery for months …

The report acknowledges that, despite evidence in 2017 of Legionella in the Pettis Medical Center’s water system, VA officials didn’t develop an effective strategy to deal with the problem until contacted in June 2018 by the Southern California News Group.”

Similarly, a February 27, 2019, article24 in Georgia Health News reports cases of Legionnaires’ disease in Georgia have risen fourfold over the past decade — from 43 in 2008 to 189 in 2018 — and fivefold across the U.S. since 2000.

Surprisingly, 80% of the Georgia outbreaks have occurred in health care facilities. As for why the disease is on the rise across the U.S., no one knows, but it’s likely due to a convergence of factors, aging infrastructure being one of them.25

Filtering Your Water Is a Necessity

The take-home message from all of this is that you cannot rely on authorities to warn you about potential problems with your water. In many cases, public notices will be issued, but there are no guarantees.

Sometimes violations fall through the cracks due to poor documentation, reporting or oversight, as highlighted in the OIG report. Other times, violations are covered up — perhaps for political or financial reasons.

While lead and Legionella were the focus of this article, these are certainly not the only concerns. A 2017 analysis26 by the Environmental Working Group of water samples from nearly 50,000 water utilities in 50 states found 267 different kinds of toxins, including 93 linked to cancer and 63 suspected of causing developmental harm to children.

Among these hundreds of chemicals of concern, chromium-6 — an industrial chemical that is not regulated under the Safe Drinking Water Act — was found in drinking water in all 50 states at levels above those thought to pose a cancer risk, as was 1,4-dioxane, an industrial solvent. Nitrates, stemming from industrial agriculture, were also found at potentially risky levels.

Your safest bet is to take precautions to keep your family safe by installing a quality water filtration system in your home. As for the type of filtration system to get, there are a variety of options, most of which have both benefits and drawbacks.

Below are a few of the most common options. Allergy & Air’s 2016 article,27 “Water Filters: The Many Ways to Purify Your Drinking Water,” lists several more. Ideally, you want a filtration system that uses a combination of methods to remove contaminants, as this will ensure the removal of the widest variety of contaminants.

Reverse osmosis (RO) — In addition to removing chlorine, inorganic and organic contaminants in your water, RO will also remove about 80% of fluoride and most disinfection byproducts (DPBs).

Drawbacks include the need for frequent cleaning to avoid bacterial growth. Your best alternative is to use a tankless RO system with a compressor. Cost is another factor, as you may need the assistance of a plumber to get the system up and running. RO will also remove many valuable minerals and trace elements along with harmful contaminants.

Ion exchange — Ion exchange is designed to remove dissolved salts in the water, such as calcium. This system also softens the water and helps prevent the creation of scale buildup.

While advantages include a high flow rate and low maintenance cost, Sciencing points out the disadvantages, which include “calcium sulfate fouling, iron fouling, adsorption of organic matter, organic contamination from the resin, bacterial contamination and chlorine contamination.”28

Granular carbon and carbon block filters — These are the most common types of countertop and undercounter water filters. Granular activated carbon is recognized by the EPA as the best available technology for the removal of organic chemicals like herbicides, pesticides and industrial chemicals.

One of its downsides is that the loose material inside can channel, meaning the water creates pathways through the carbon material, thereby escaping filtering.

Carbon block filters offer the same superior filtering ability but are compressed with the carbon medium in a solid form. This eliminates channeling and gives the ability to precisely combine multiple media in a sub-micron filter cartridge. By combining different media, the ability to selectively remove a wide range of contaminants can be achieved.

Sources and References

Artificially sweetened products threaten heart health, study reveals

Reproduced from original article:
https://www.naturalhealth365.com/artificial-sweeteners-soda-3141.html

by:  

artificial-sweeteners(NaturalHealth365) Just about everyone knows that sugary beverages not only destroy weight loss plans, but also trigger negative health effects.  Unfortunately, as a replacement for sugar-laced beverages, too many people still turn to soda with artificial sweeteners – with the hope of cutting out “empty calories.”

However, there’s a growing body of scientific evidence that suggests it’s a really bad move.

Excessive sugar consumption continues to be a problem in the Western diet, contributing to health conditions like diabetes, obesity plus much more.  However, while diet soda and other diet drinks are popular, one new study published in JAMA Internal Medicine found that artificially sweetened beverages have the potential to increase the risk of heart disease and other serious health conditions.

Discover what artificial sweeteners can do to your cardiovascular system

The study looked at regular consumption of soda and found that individuals who consume soft drinks regularly have a higher risk of mortality over 16 years compared to those who drink them infrequently.  Data from more than 450,000 men and women who were a part of the European Prospective Investigation into Cancer and Nutrition (EPIC) was considered, with initial dietary assessments done on the type and number of soft drinks consumed daily, weekly and monthly when individuals enrolled.

Individuals who consumed two or more glasses of soda a day had a 17% higher risk of dying from any cause during the 16.4-year follow-up period.  For those who drank beverages with artificial sweeteners, their mortality risk was 26% greater.

Do NOT ignore the health dangers linked to toxic indoor air.  These chemicals – the ‘off-gassing’ of paints, mattresses, carpets and other home/office building materials – increase your risk of headaches, dementia, heart disease and cancer.
Get the BEST indoor air purification system – at the LOWEST price, exclusively for NaturalHealth365 readers.  I, personally use this system in my home AND office.  Click HERE to order now – before the sale ends.

Among those who had a high intake of sweetened sodas, the risk of dying of heart disease was 27%.  Shockingly, people that drank sodas with artificial sweeteners had a 59% greater risk, far higher than in those who consumed the sugary sodas.

Beyond heart disease, drinking a glass a day of sugary beverages was also linked to a 59% higher risk of digestive diseases.

Don’t be fooled: Fruits juices can be just as bad as soda

While some people turn to fruit juices thinking they’re a healthier beverage choice, they can be just as bad as sodas. Regular consumption of commercially-produced fruit juices has also been linked to premature death.

Consuming 10% of more of your daily calories from sugary drinks increases the risk of dying from heart disease by 44%, and that includes drinking store-bought fruit juice.

Both sugary beverages and soda with artificial sweeteners come with serious health risks, and this recent study showed that drinking artificially sweetened beverages was even more dangerous than consuming the sugary ones.

And remember, artificial sweeteners don’t just show up in sodas, they’re often found in juices, coffee drinks and “diet” sweets like cupcakes and donuts.  Even some ‘healthy-sounding’ beverages contain them.

Bottom line: Instead of drinking sugary sodas, artificially sweetened beverages or fruit juices, try staying well hydrated with plenty of clean (purified) water – every day.  If you want something sweet, go for an organic apple or a bunch of blueberries.

And, if you’re having trouble with your blood sugar levels – you might want to look at the value of alpha lipoic acid.

To learn more about the dangers of artificial sweeteners, listen to this mind-blowing NaturalHealth365 Podcast with Jonathan Landsman.  You’ll never look at artificial sweeteners the same again.

Sources for this article include:

JAMANetwork.com
LifeExtension.com
NaturalHealth365.com
ConsumerReports.com

Blood Tests – How to read the results

By Brenton Wight – LeanMachine, Health Researcher, updated 13th January 2020

Blood Tests – They May Save Your Life!

Blood tests should be carried out with your annual checkup, or any time you have a medical condition

Urine tests are also common, but many are inaccurate, because they only tell us what has left the body, not what is currently available in the body to feed our cells and keep us in good health.
Urine tests are included here where appropriate and where the results can be useful.
Important:
ALWAYS get a printed copy of your tests. The Doctor cannot refuse as the results belong to you.
Unfortunately, Doctors often only look at results outside the “normal range” and disregard everything else.
There are several problems here.

  • There can be potential problems buried within the “normal range”
  • The “normal range” is an average range for a person of the same age and sex as you, not accounting for weight, height, body fat, muscle mass, and general physical condition
  • The “normal range” given does not indicate if the low end, middle or high end of the range is optimal
  • The “normal range” does not always inform you of changes over time within the range which may indicate a better or worse diet, health or impending sickness, etc
  • The “normal range” includes a lot of sick people, skewing the results

For example, the “normal range” for vitamin D3 is 60 to 160 nmol/litre for most Australian labs (some labs now say 75), but the OPTIMAL range is 125 to 175 nmol/litre, with the preference at the high end of the range.
When the results come in at 61, the lab says you are fine, the doc says you are fine, but your immune system is nowhere near the optimum level!
Another example is TSH (Thyroid Stimulating Hormone). The “normal range” is 1.0 to 4.0 but anything over 2.0 is certainly undesirable, and may indicate a hypothyroid condition, going un-diagnosed because the lab and the doc both agree “you are fine”.

Reference Ranges

Some labs indicate “Reference Range”, other labs may indicate “Normal Range”, “Reference Intervals”, “Desirable Range”, “Healthy Range”, Target Range”, “Average Range”, “Suggested Range”, “Optimal Range” which all sound similar, but actual values may vary.
Reference ranges are calculated by the lab as what 95% of the “normal” population conform to (2 standard deviations for you mathematicians).
However, in the 95% of the population who are considered “normal”, we have some sick, healthy, athletic, frail, obese, slim, old, young people of different ethnic backgrounds, occupations, environments, exposure to toxins, which can skew the test results, along with many other factors such as male or female.
Just because we fit into the reference range, it does not mean that we are in the best physical condition.
And for the 5% (or 1 in 20 people) who are outside this range, but still considered “normal” their results are questionable, whether they are at the healthy or unhealthy end of the reference range, which can be a high or a low number, depending on the test.
In some tests, a small margin over or under the reference value can indicate a problem, and in other tests, we can be several hundred times the reference range before we have a serious condition.
The labs will do their best job to calculate the reference range for our age and sex, sometimes weight, sometimes our medical condition, but that is all.
Every lab uses their own terminology, their own test equipment and their own numbers, so typical results may vary.
USA labs often use different units for measurement compared to Australian and other countries, so we must always look at the units as well as the numbers.
Many labs are now trying to standardise in SI (Standard International) units.
It is a good idea to use the same lab each time so that any changing numbers over time can be used as clues to various medical conditions or changes in health.
Many labs who upgrade their equipment and/or software will give two sets of results, pertaining to old and new systems.

Some Conditions Diagnosed by a Blood Test

Malnutrition

Even though we eat much more than our ancestors, modern foods are often devoid of nutrients due to repetitive farming practices, over-processing, over-heating, and the addition of toxic chemicals, trans fats, sugars, etc which all contribute to bad health and a reduced ability for the body to absorb nutrients from food.
Many prescription medications, especially antacids and PPI’s (Proton Pump Inhibitors like Nexium) make this problem even worse by REDUCING stomach acid.
The body NEEDS stomach acid to absorb nutrients AND to make vitamin B12, an important part of the digestion process.
We can have a full stomach, but be starved of nutrients without adequate stomach acid.
People with lap-band or similar surgery, or who have part of the stomach or intestines removed due to disease or cancer, or who have damaged gut bacteria from antibiotics or other prescription medication,
or who have taken antacids or PPI (Proton Pump Inhibitors), or who have a diet poor in nutrition, will have poor absorption of vitamins, minerals, amino acids, etc and can easily suffer from malnutrition.
Malnutrition itself can skew the results of other blood tests, and doctors do not always take this into account, as most assume malnutrition cannot exist in modern society.

Cardiovascular Disease

High LDL cholesterol with low HDL cholesterol, combined with high triglycerides is a warning sign of future heart attack or stroke, and diet must be improved to reverse this condition.
These tests are not part of a normal blood workup so we should ask the doctor for a “lipid study”.

Tumours or Cancer

Cancer tests are described under the Cancer Tests heading near the bottom.

Abnormal White Blood Cell Count and/or Platelet Counts

May indicate Leukemia, with early treatment promoting better recovery.

Diabetes

Diabetes, or even pre-diabetes, can be caught early with a simple blood glucose test.
This condition is easily controlled with some very basic changes to the diet, combined with regular exercise.
Left unchecked, diabetes can lead to blindness, amputations, heart attack, stroke or death.

Allergies or Parasites

Blood tests can reveal these problems, and simple steps are required to correct these conditions.

Infections

Infections can spread, causing a lot of damage, but are easily treated if diagnosed with a blood test.

Anemia

Can be caused by many things including internal bleeding, kidney disease, malnutrition, vegan diet, etc but can usually be simply treated.

Thyroid Problems

The thyroid controls many other hormones in the body, but problems can be found easily with a blood test.
This test must be asked for, as it is not included in a typical blood workup.

Symptoms requiring a blood test

  • Unexplained Tiredness
  • Unexplained weight gain
  • Unexplained weight loss
  • Fever
  • Unexplained pain
  • Changes in bowel habits
  • A long time since the previous test

Preparing for the test

Your Doctor will arrange the test. Ensure that you ask the following:

  • Do I have to fast?
  • Can I drink water?
  • Do I continue my prescription medication?
  • Do I continue my supplements, vitamins, minerals?
  • If I am on blood-thinning medication, what precautions are required?
  • Have I donated blood recently, or can I soon?
  • Please give me a printed copy for my own records when the results are available.

If the test is a fasting test, arrange a time early in the morning for the test so you can follow up with a nourishing breakfast afterwards.
Do not drink alcohol for 24 hours before the test.
Avoid fatty foods at the last meal before the test.
If all of the results are “within the normal range” it does not mean you can now forget everything.
Compare all results with previous tests, and keep results to compare with the next tests.
If you still have some unexplained condition, there may be repeated tests, new tests, ultrasound, x-rays, CT, MRI or other tests required.
Even if you are feeling fine, look up your previous test results.
If you do not have these results, ask the Doctor – previous records should be on their database, as they are generally e-mailed from the lab.
Compare the results line by line to check if any levels are getting better or worse. Some results will give a higher or lower number,
but check details below on each individual test to work out if this means getting better or getting worse.
Discuss all results with your Doctor, and if you cannot get useful answers, find another Doctor!

Some of the many different Blood Test Measurements and abbreviations

Some Australian (SI), some USA measurements.

  • cmm – cells per cubic millimeter
  • g/L – grams per liter
  • g/dL – grams per deciliter (1/10 of grams per liter)
  • IU/L – international units per liter
  • mEq/L – milliequivalent per liter
  • mg/dL – milligrams per deciliter
  • mL – milliliter
  • fL – femtoliter, 10-15 Liter, or one thousand trillionth (one quadrillionth) of one liter.
  • mmol/L – millimoles per liter
  • ng/mL – nanograms per milliliter
  • pg/mL – picograms (one-trillionth of a gram) per mL (milli-litre)

The standard CBE (Complete Blood Exam), also called CBC (Complete Blood Count) or FBE (Full Blood Exam)

This is the most common test ordered by the Doctor – by no means complete, but can isolate many common problems.
This test determines red blood cells, various white blood cells, and platelets in the blood.
Do not consider these figures absolute, as different labs and different countries and different ages and sexes of patients have different ranges.
Not all labs do all of the tests.
Not all doctors ask for all of the tests.
Many of the tests are for specific diagnosis or monitoring of some disease or condition.

The Red Blood Cell Test Group

Hb or Hgb (Haemoglobin)

Normal values for adult males: 130 to 170 g/L (13.0 to 17.0 g/dL), adult females: 120 to 150g/L (12.0 to 16.0 g/dL)
OPTIMUM values for adult males: 140 to 150 g/L (14.0 to 15.0 g/dL, adult females: 135 to 145g/L (13.5 to 14.5 g/dL)

Adult males after middle age: 124 to 149 g/L (12.4 to 14.9 g/dL), adult females after middle age: 117 to 138 g/L (11.7 to 13.8 g/dL)
This is the iron-containing component of red blood cells which carries oxygen from the lungs to every part of the body, and gives the red cells their bright red colour.
Low Haemoglobin levels often indicate Anaemia.
Hemoglobin must be evaluated with HCT (hematocrit), RBC and MCV to determine if there is fact anemia and the type of anemia.
Low Haemoglobin can be caused by:

  • Low production of red blood cells in the bone marrow
  • Low iron intake
  • Low folate and/or vitamin B12
  • Internal or external bleeding
  • Blood cell destruction
  • Chronic illness
  • Low testosterone
  • Vegan, vegetarian or low-carbohydrate diet

High Haemoglobin can be caused by:

  • Dehydration (as in prolonged or severe diarrhea)
  • Emphysema, severe asthma, or other respiratory disease
  • Macrocytosis (enlargement of red blood cells, often caused by hypothyroid or liver disease or deficiency of B6, B12, folate)
  • Adrenal cortex over-activity
  • Polycythemia vera (bone marrow makes too many red blood cells)
  • Living at high altitude
  • Splenic hypofunction
  • Immune suppression
  • Testosterone supplementation

RBC (or RCC, R.B.C.,R.C.C.) – Red Blood Cell Count or Erythrocyte Count

Normal range: Adult males 4.5 to 5.5 x 1012/L, adult females 3.8 to 4.8 x 1012/L.
OPTIMAL range: Adult males 4.7 to 5.25, adult females 4.0 to 4.5.
Units are trillions (1012) per litre, or millions (106) per cubic mm (mm3) which both give the same result.
An estimate of the number of red blood cells per mm3 of blood.
Low RCC may indicate:

  • Anaemia
  • Blood loss, internal or external
  • Bone marrow failure
  • Iron deficiency
  • Copper deficiency
  • Over-hydration
  • Leukemia
  • Multiple myeloma (cancer of plasma cells in bone marrow)
  • Malnutrition
  • Cell damage
  • Iron deficiency (with a low MCV)
  • Vitamin B6, B12, and/or Folic Acid deficiency (with a high MCV )
  • Chronic Disease
  • Liver dysfunction
  • Kidney dysfunction (also abnormal chemistry tests, BUN, creatinine)
  • Hereditary anemia
  • Free radical pathology
  • Toxic metals
  • Catabolic Metabolism
  • Pregnancy
  • Erythropoietin deficiency, typically those with chronic kidney disease
  • Hemolysis, or RBC destruction caused by transfusions and blood vessel injury
  • Thyroid disorders
  • Adrenal dysfunction
  • Cortisol production dysfunction
  • Chronic bacterial infections

High RCC may indicate:

  • Lung disease
  • Emphysema
  • Pulmonary fibrosis
  • Cigarette smoking
  • Sleep Apnea
  • Living at a high altitude
  • Cystic fibrosis
  • Adrenal cortical hyperfunction (either too much cortisol or too much aldosterone)
  • Anabolic Metabolism (testosterone supplementation)
  • Congenital heart disease
  • Cardiovascular dysfunction
  • Dehydration
  • Kidney disease
  • Renal cell carcinoma (kidney cancer)
  • Immune suppression
  • Transplant rejection drugs
  • Gentamicin and Methyldopa drugs
  • Performance enhancing protein injections and anabolic steroids
  • PV (Polycythaemia Vera) – genetic disease where bone marrow makes too many red blood cells

May help indicate the lifespan of the cells, and indicate problems, but may not indicate the actual problem, so other tests will be required.

Haematocrit, also called HCT or PCV – Packed Cell Volume

Normal Range: Adult males: 40 to 50%, adult females: 36 to 46%.
OPTIMUM Range: Adult males: 42 to 48%, adult females: 39 to 45%
Percentage of red blood cells in the total blood volume.
Low PCV/HCT may indicate:

  • Anaemia
  • Blood loss
  • Low RBC
  • Bone marrow failure
  • Abnormal breakdown of Red Blood Cells
  • Increased production of WBC
  • Leukaemia
  • Adrenal dysfunction
  • Low thymus function
  • Multiple myeloma (cancer of plasma cells in bone marrow)
  • Over-hydration
  • Malnutrition
  • RA (rheumatoid arthritis

High PCV/HCT may indicate:

  • Shock
  • Immune supression
  • Excess RBC
  • Dehydration (typically burns or diarrhoea)
  • Eclampsea (a serious pregnancy condition)
  • Polycythaemia vera – bone marrow makes too many red blood cells
  • Spleen hyperfunction

MCV (Mean Cell Volume or Mean Corpuscular Volume)

Normal adult range: 83 to 101 fL (femtoliters).
OPTIMUM adult range: 87 to 92 fL
Some labs give results in cubic microns, which is identical to the range in femtoliters.
An estimate of blood cell volume, or average volume of red blood cells, or the average amount of space taken by each red blood cell.
May help determine the type of anaemia and/or chronic fatigue syndrome.
Low MCV can indicate:

  • Copper deficiency
  • Iron deficiency
  • Low stomach acid
  • B12 and/or Folate deficiency
  • Rheumatoid arthritis
  • Vitamin deficiency
  • Vitamin B6 deficiency
  • Pregnancy
  • Chronic disease
  • Lead or other toxins
  • Hereditary anemia such as thalassemia or sideroblastic
  • Hemolytic anemia
  • Haemoglobin disorder
  • Blood cell destruction
  • Bone marrow disorder

High MCV can indicate:

  • Hereditary anemia
  • Alcoholism
  • Liver disease
  • Malnutrition
  • Bone marrow problems
  • Chronic lung disease
  • Problem with prescription medication
  • Megaloblastic Anemias (pernicious, folic acid deficiency, B12 deficiency)
  • Reticulocytosis (acute blood loss response. Reticulocytes are immature cells, relatively large in size compared to a mature red blood cell)
  • Artifact (aplasia, myelofibrosis, hyperglycemia, cold agglutinins)
  • Hypothyroidism
  • Anti-convulsant drugs
  • Zidovidune treatment (for AIDS)

MCH (Mean Corpuscular Haemoglobin or Mean Cell Haemoglobin)

Normal range: 27 to 32 picograms
MCH is a calculation determining the amount of oxygen-carrying haemoglobin inside the Red Blood Cells.
Results too high (usually Macrocytic anemia), often caused by too little vitamin B12 and/or folate, in turn often caused by low stomach acid or antacid use.
Macrocytic Red Blood Cells are larger than either normal or microcytic RBCs, tending to have higher MCH values.
The larger cells mean that there are fewer cells, and less haemoglobin is then available.
Results too low (usually Microcytic) may indicate Iron Deficiency Anemia, or a nutritional deficiency.
Normally MCH is elevated or depressed when MCV is elevated or depressed, and usually for the same reasons as MCV.

MCHC (Mean Corpuscular Haemoglobin Concentration)

Normal range: 315 to 345 g/L or often specified as 28% to 36%
OPTIMUM range: 32% to 35%
A calculation of the concentration of haemoglobin inside the Red Blood Cells.
Decreased MCHC values (hypochromia) are when haemoglobin is abnormally diluted inside the red blood cells.
Indicates anemia if the count is low, or possible nutritional deficiencies if high.
Typical causes are iron deficiency anaemia and in thalassaemia.
Increased MCHC values (hyperchromia) are seen in conditions where the haemoglobin is abnormally concentrated inside the red blood cells.
Typically seen in burn patients.
MCHC is increased or decreased in the same conditions as MCV is increased or decreased, except:
1. In spherocytosis (a fairly rare congenital disorder), MCHC is elevated
2. In pernicious anemia, MCHC is normal.

RDW (Red Cell Distribution Width or Random Distribution of red cell Width)

Normal range: 11% to 15%
OPTIMAL Range: 13%
Tests for the shape and size of red blood cells, but the term “width” refers to the distribution, rather than the size of cells.
Liver disease, anemia, nutritional deficiencies, and many health conditions can cause high or low RDW tests.
RDW can be increased in:

  • B12 and Pernicious anemia
  • Folic acid anemia
  • Iron deficiency anemia combined with other anemia
  • Hemolytic anemia
  • Transfusions
  • Sideroblastic anemia
  • Alcohol abuse

RDW can be decreased in:

  • Iron deficiency anemia (blood loss, parasites, poor iron absorption)
  • Vitamin B6 anemia
  • RA (Rheumatoid arthritis)

ESR (Erythrocyte Sedimentation Rate)

Also known as SED (Sedimentation Rate).
A measure of how Erythrocytes (Red Blood Cells) sink in a pipette. The faster the blood cells sink, the higher the inflammation we have.
Inflammation creates proteins that make red blood cells fall faster, giving a higher test result.
The test reports the distance (mm) between the clear liquid (plasma) at the top of the tube and the red blood cells after 1 hour.
The normal range:
Males: 0 to 15 mm/hour
Females: 0 to 20 mm/hour
Seniors may have slightly higher readings.
High ESR can be caused by:

  • pregnancy
  • inflammation
  • infection
  • anemia
  • kidney or other cancer
  • rheumatoid arthritis
  • polymyalgia rheumatica
  • giant cell arteritis (swelling in blood vessel lining)
  • systematic vasculitis (inflammation in blood vessels)
  • multiple myeloma
  • lupus (SLE or systemic lupus erythematotus)
  • IBS (Inflammatory Bowel Disease)

Low ESR can be caused by:

  • polycythemia
  • sickle cell anemia
  • hereditary spherocytosis
  • congestive heart failure

The ESR test is recommended for patients with symptoms of headaches, stiff joints, pain in shoulders, neck or pelvis, appetite loss, unexplained weight loss.

Platelets

Most adults have between 150,000 to 450,000 platelets per mcL (microlitre) of blood.
1mcL is the same as 1 cubic millimetre (mm3).
The OPTIMUM values are 230,000 to 400,000 per mm3.
Platelets are small portions of cells involved in blood clotting, continually made by the bone marrow, as each platelet survives only around 10 days.
Platelets stick together when we cut ourselves to form a clot to stop bleeding.
Too many or too few platelets can affect clotting in different ways, and the number of platelets may also indicate a health condition.
Low platelets (thrombocytopenia) can be caused by:

  • Bleeding
  • Alcoholism
  • HIV
  • Toxins
  • Inherited disorders like Wiskott-Aldrich or Bernard-Soulier
  • Bacterial infections
  • SLE (Systemic Lupus Erythematosus)
  • RA (Rheumatoid Arthritis)
  • Pernicious anaemia
  • Megaloblastic anemia (B12 and/or folic acid deficiency)
  • Hypersplenism (spleen takes too many out of circulation)
  • Leukaemia
  • Chemotherapy
  • Marrow depression (aplastic anemia, radiation, drugs)
  • Marrow infiltration (acute leukemia, carcinoma, myelofibrosis, multiple myeloma)
  • Prescription medications like heparin, quinidine, quinine, sulfa-containing antibiotics, interferon, anticonvulsants and gold salts
  • Immunologic (ITP, infectious mononucleosis (EBV), SLE, Lymphoma, CLL)
  • Dilution due to overhydration (drinking too much water)
  • Coagulation disorders (DIC, septicemia, hemolytic-uremic syndrome, TTP, large hemangiomas, heart valve, eclampsia)
  • Hypersplenism (over-active spleen, removing old blood cells too soon)
  • Platelet aggregation or large platelets
  • Rubella
  • Liver dysfunction (cirrhosis)

Idiopathic Cytopenic Purpura (ITP), a condition possibly related to viral infection, autoimmunity or chemical toxin.

High platelets (essential thrombocythemia) can be caused by:

  • Thrombocythemia (bone marrow makes too many platelets)
  • Gene mutations (Janus kinase 2 [JAK2] gene)
  • Infections
  • Iron deficiency
  • Hemolytic anemia (abnormal breakdown of red blood cells)
  • Acute blood loss
  • Splenectomy (surgical removal of the spleen)
  • Tissue damage, chronic inflammation, surgery
  • Disseminated carcinoma (a condition where cancer cells are spreading)

Mean Platelet Volume (MPV)

Normal range: 7.5 to 11.5 femtoliters
This test measures and calculates the average size of platelets.
Higher MPVs mean the platelets are larger, which could put an individual at risk for a heart attack or stroke.
Lower MPVs indicate smaller platelets, meaning the person is at risk for a bleeding disorder.

The White Blood Cell Test Group

WBC – White Blood Cells (or leukocytes, or sometimes leucocytes)

Normal Range: 4,500 to 11,000 WBC per mcL (micro-litre) of blood, average person around 7,000 (USA labs 4,300 to 10,800 cmm).
A high number can be an indicator of disease.
Part of the immune system which defends against infectious, disease and foreign bodies.
WBC’s live for three to four days in the body, and are found throughout the blood and lymphatic system.
WBC’s make up around 1% of the total blood volume in a healthy adult, and help fight infections. A high white blood cell count may help identify infections.
It may also indicate leukemia, which can cause an increase in white blood cells.
Too few white blood cells may be caused by some medications or health problems.
This test measures the numbers, shapes and sizes of various types of white blood cells.
The WBC differential count (percentage) shows if the numbers of different cells are in proper proportion to each other.
Irregularities may indicate infection, inflammation, autoimmune disorders, anaemia, or other health conditions.

High leukocytes (leukocytosis)

Typically caused by a bacterial or viral infection, the body responding my making more WBC’s.
Typical is bone marrow disease, leukemia, myelofibrosis, smoking, stress, tuberculosis, rheumatoid arthritis, whooping cough.
Also can be caused by reaction to some medications such as antibiotics, diuretics, corticosteroids, epinephrine and others.

Low leukocytes (leukopenia)

Caused by cancer, viral infections of the bone marrow, congenital disorders, autoimmune diseases which attack WBC’s, major infections which use up WBC’s faster than they can be produced, chemotherapy, AIDS, lupus, malnutrition, lack of vitamins, radiation, parasites.
Volume, conductivity, and granularity can change due to activation, presence of immature cells or malignant leukocytes in leukemia.

Five Major Types of White Blood Cells

  • Neutrophils – making up around 62% (can be 40% to 80%) of White Blood Cells, neutrophils attack bacteria and fungi, and live from a few hours to a few days.
    If given as the number of cells instead of a percentage, divide the number by the WBC (White Blood Cells) to get the percentage.
    The bone marrow makes neutrophils and stores them, to be released into the blood in response to physical stress or infections.
    Neutrophils contain enzymes which can break down bacteria, and also contain glycogen and protein for their own energy.
    High neutrophils increase the body’s requirement for protein to replace that used by the bone marrow to make more nuetrophils.
    High Neutrophils (Neutrophilia) can be caused by infection, inflammation, pregnancy, or physical stress (intense exercise).
    Low Neutrophils (Neutropenia) can be caused by B12 and folate deficiency, infections that destroy neutrophils, aplastic anemia, leukemia, autoimmune disease, hypersplenism (spleen enlargement), dialysis, some medications.
  • Eosinophils – making up 2.3% (can be 1% to 4%) of White Blood Cells, eosinophils attack parasites and allergens.
    High eosinophils normally indicate parasitic infections or allergic reactions.
    Low eosinophils can be caused by alcohol intoxication or excess cortisol production.
  • Basophils (also called basophiles, basophilic leukocytes, basocytes, basophilocytes, mast leukocytes) – making up 0.4% (can be up to 1%) of White Blood Cells, basophils release histamine for inflammatory allergic responses.
    High basophils may be caused by bone marrow disease, Chrohn’s disease, removed spleen, when inflammation is healing, asthma, chronic dermatitis, hypothyroidism, Hodgkins lymphoma.
    Low basophils can be caused by hyperthyroidism, allergies, pregnancy, ovulation, immune-suppressing drugs.
  • Lymphocytes – making up 30% (can be 20% to 40%) of the White Blood Cells, living for years as memory cells, months for other types.
    Normal range (adults): 1,000 to 4,800 lymphocytes in 1 microliter (µL) of blood.
    Normal range (children): 3,000 to 9,500 lymphocytes in 1 microliter (µL) of blood.
    Unusually high or low lymphocytes may cause no symptoms or problems on their own,
    and may be the body’s normal response to infection, inflammation or other condition, and often return to normal after some time.
    If there are other tests with unusual results, the doctor should look at all these tests together to determine if further invesatigation is required.
    If levels do not retern to normal, or keep progressing high or low, further investigation is required,
    as this may be diagnosed as lymphocytopenia or lymphocytosis, with symptoms from mild to severe, and the duration depends on the cause.Low lymphocytes (lymphocytopenia) may indicate:

    • Poor immune system
    • Lymphocyte cells are trapped in the spleen or lymph nodes
    • The marrow cannot make enough lymphocytes
    • Something is destroying the lymphocytes

    Some acquired causes of Low Lymphocyte Count:

    • Typhoid fever
    • Viral Hepatitis
    • HIV/AIDS
    • Tuberculosis
    • Aplastic Anemia
    • Myelofibrosis
    • Systemic Lupus Erythematosus (SLE)
    • Hodgkin’s Lymphoma
    • Dengue
    • Radiation and Chemotherapy

    Some inherited causes of Low Lymphocyte Count:

    • Wiskott–Aldrich syndrome
    • Ataxia-telangiectasia
    • DiGeorge Syndrome
    • Severe Combined Immunodeficiency

    High lymphocytes (lymphocytosis) may indicate cancer, autoimmune disorder or severe viral infection.
    Lymphocytes are white blood cells that help defend the body from illness, consisting of three major types: B cells, T cells, and NK (Natural Killer) cells:

    • B cells – release antibodies that fight bacteria and toxins, also assist in activation of T cells
    • T cells attack cells that have been infected by viruses or malignancies, and consist of 4 sub-types:
      • CD4+ (Th or T helper cells) – activate and regulate B and T cells, release T cell cytokines to aid the adaptive immune system to recognise foreign invaders
      • CD8+ (cytotoxic T cells) – tumour cells and virus infected cells
      • γ δ (gamma delta) T cells – bridge between innate and adaptive immune responses (phagocytosis)
      • Regulatory (supressor) T cells – return the immune system to normal functioning after an infection, preventing auto-immune disease
    • NK (Natural Killer) cells – part of the innate immune system, also assisting the adaptive immune system, important in cancer therapy, helping reject tumours and cells infected by viruses,
      killing invaders by releasing small cytoplasmic granules of proteins that literally reprogram the target cells to self-destruct
  • Monocytes – making up 5.3% (can be 2% to 8%) of the White Blood Cells, monocytes migrate from the blood into other tissues as macrophages,
    also into the liver where they become Kupffer cells.

Blood Biochemistry, or Blood Chemistry

Electrolytes

Electrolytes are electrically charged chemicals (ions) that are vital to normal body processes, such as nerve and muscle function.
Electrolytes help regulate fluid in the body and maintain the acid-base balance.
The important electrolytes: Sodium, Potassium, Chloride and Bicarbonate (HCO3).
Normally bundled with the electrolytes are the important mineral tests: Phosphorus, Calcium, Iron, Zinc and Magnesium. Magnesium not normally tested as only about 1% of the body’s Magnesium is in the blood, but very important, as 90% of the population has lower than optimal Magnesium intake. Zinc also seldom tested, but equally important.

Sodium

Normal range: 135 to 145 mmol/L (or mEq/L) depending on the lab.
An essential electrolyte.  Essential for the body to balance water volume and pressure in thee body tissues, carry nutrients into cells and wastes from cells,  for nerve impulses and muscle contractions, automatic functions in the intestinal tract.
Irregularities in levels may indicate dehydration, disorders of the adrenal glands, excessive salt intake, corticosteroids, painkiller medications, liver or kidney problems.
The body keeps sodium levels in the normal range by excreting more or less through the kidneys into urine.
High sodium may raise blood pressure, and/or cause leg swelling in some people.
Many factors affect levels. Shock or trauma may increase levels. Some prescription diuretics, anti-depressants and blood pressure medications deplete sodium.
Drinking too little water can increase levels, drinking too much water can deplete levels.
Excessive sweating or vomiting can reduce sodium levels.
Too much sodium (Hypernatremia) or too little sodium (Hyponatraemia) cause many problems.

Sodium above the range may suggest:

  • Water retention, weight gain (water weight!)
  • High Blood Pressure
  • Dehydration
  • Diabetes
  • Dysfunction of Adrenal Glands

Sodium below the range may suggest:

  • Addison’s Disease (Damaged Adrenal Glands)
  • Severe Diabetes
  • Liver Cirrhosis
  • Kidney damage
  • Diuretic medications
  • Congestive heart failure
  • Excessive sweating
  • Diarrhea
  • Hypothyroidism

Urine Sodium

The amount of Sodium in urine, which is excreted by the kidneys.
Used with other electrolyte tests, and to help determine kidney function.
Reference Range: 20 mmol/L as a random urine test, or 28-272 mmol/L as a 24-hour urine test.
The excretion of sodium varies with dietary intake, and excretion is greater in daytime than at night.
Medications known to interfere with the results:
Corticosteroids

  • Nonsteroidal anti-inflammatory drugs (NSAIDs)
  • Prostaglandins (used to treat conditions such as glaucoma or stomach ulcers)
  • Water pills (diuretics)

Low urine levels may be due to:

  • Congestive heart failure
  • Excessive sweating
  • Diarrhea
  • Pyloric obstruction
  • Malabsorption and primary aldosteronism
  • Excess water consumption

Increased urine levels may be due to:

  • Increased salt intake (typically from processed foods)
  • Failure of adrenal glands
  • Diabetic acidosis
  • Salt losing renal (kidney) disease
  • Water deficient dehydration

Potassium

Normal range: 3.6 to 5.2 mmol/L (or mEq/L) depending on the lab.
* A critical level is 5.5 mmol/L and over 6.0 mmol/L can be life-threatening.
An essential electrolyte, required for relaying nerve impulses, maintaining proper muscle functions, and regulating heartbeats. Without Potassium, the heart cannot beat!
The body must keep potassium and sodium levels in balance with each other for correct cell function and nerve transmission. High Potassium may cause a pounding heart, especially when lying down, and increases heart attack risk if high levels maintained over a long time,

High potassium (Hyperkalemia) issues:

  • Kidney disease
  • Adrenal exhaustion
  • Some blood pressure drugs (ACE inhibitors, ARB’s, some Beta blockers)
  • Potassium sparing diuretics
  • Diabetic ketoacidosis
  • Primary aldosteronism
  • Cushing’s syndrome
  • Heavy alcohol use
  • Drug use
  • Anything causing muscle breakdown (which releases potassium into the blood), e.g.Statins
  • Possible false score if the blood specimen is mis-handled

Low potassium levels (Hypokalemia) issues:

  • Irregular heart beat
  • Diuretics (mainly “Loop Diuretics”)
  • Blood pressure drugs (if they include loop diuretics)
  • Loss of body fluids
  • Exhaustion
  • Swollen ankles and fingers
  • Worse menopause symptoms
  • Stress
  • Asthma drugs (such as Abuterol)
  • Antibiotics
  • Diarrhea
  • Anorexia
  • Laxatives
  • Partial paralysis in legs, hands

Constipation can be a symptom of high or low potassium.
Low potassium is a major cause of cardiac arrhythmia, which can be a life-threatening condition.

Chloride

Normal range: 98 to 106 mEq/L (USA labs).
An essential electrolyte, and the body must keep chloride levels in the normal range.
Often will increase (hyperchloraemia) or decrease (hyporchloraemia) with changes in sodium levels (from salt – Sodium Chloride).
Some medications or a diet high in salt can cause high chloride.
Excess chloride may indicate an acidic environment in the body, or dehydration, multiple myeloma, kidney disorders, or adrenal gland dysfunction.

Bicarbonate (total HCO3, total CO2)

Normal Range: 24 to 30 mmol/L (Australia) or mEq/L (USA)
Most of the carbon dioxide in the body is in the form of bicarbonate (HCO3).
An essential electrolyte, part of a standard blood electrolyte panel, and part of a renal (kidney) function test, lung test or metabolic test.
Normally taken from a vein (in the crook of the elbow), but for some lung tests, it is taken from an artery, usually in the wrist, for an ABG (Arterial Blood Gas) test.

ABG (Arterial Blood Gas)

Taken from an artery to test for various gases which may indicate problems with the heart, lungs, metabolism or kidneys.
Not normally tested unless there is a serious illness.

Serum Anion Gap

Anion Gap (AG or AGAP) is the difference between measured cations and measured anions in serum.
This difference does not reflect a true disparity between positive and negative charges,
because serum is actually electrically neutral when all serum cations and anions are measured.
Rather, the anion gap is a measurement artifact resulting from the fact that only certain cations and anions are routinely measured.
Cations are ions with a positive electric charge. Anions are ions with a negative electric charge.
Anion gap metabolic acidosis is secondary to the addition of endogenous or exogenous acid.
Anion Gap can be calculated in different ways, but commonly the sum of common cations less the sum of common anions:
Serum Anion Gap (AG) = Sodium (Na+) + Potassium (K+) less the sum of (Chloride Cl) and Bicarbonate HCO3)
Sometimes the potassium is ignored, as it is comparatively small compared to Sodium, giving different results:
Reference range for serum Anion Gap is 8 to 16 mmol/L or mEq/L (without potassium)
Reference range for serum Anion Gap is 12 to 20 mmol/L or mEq/L (with potassium)
Normal Anion Gap is specific to laboratory and equipment used.
Newer technology and equipment have been shown to measure “low” Anion Gap in otherwise normal, healthy people.
Because there are other chemicals with anions in the body, a test below 11 is considered normal.
If test results are unexpected, the doctor may ask for a test repeat, as errors in any of the electrolyte tests will give an incorrect Anion Gap calculation.
A high Anion Gap, typically over 20, can indicate:

  • Lactic Acidosis (high blood lactic acid level), e.g. from over-exercising
  • Diabetes where ketones break down causing diabetic ketoacidosis
  • Starvation causing ketoacidosis
  • Alcoholic ketoacidosis
  • Poisoning, e.g. methanol, aspirin, carbon monoxide, cyanide, anti-freeze (ethylene glycol)
  • Toluene poisoning
  • Paracetamol (Acetaminophen) overdose
  • Paraldehyde overdose
  • Iron overdose
  • Kidney failure, when kidneys cannot take in bicarbonate which is then lost in the urine
  • Uremia (urea in the blood)

A low Anion Gap can be caused by:

  • Hyponatremia (decreased sodium in the blood)
  • Multiple myeloma (cancer of plasma cells in bone marrow)

Other causes of low Anion Gap, although less common:

  • Bromide (negatively charged) intoxication, from some sedative drugs, medication for myasthenia gravis, and some herbal medications.
    High bromide can lead to neurologic or dermatologic symptoms. Bromide can interfere with chloride calculation, giving a false low Anion Gap.
    Bromide is often used in heated spas as a disinfectant, where it is readily absorbed through the skin, also blocking thyroid uptake of Iodine
  • Lithium is positively charged, often prescribed for bipolar disorder, and high concentrations may lower Anion Gap
  • Increase in positively charged ions such as calcium and magnesium can also lower the Anion Gap

Urine Anion Gap

The Urine Anion Gap test where the ammonium ion (NH4+) is the main positive ion (Cation).
However, Urine NH4+ is difficult to measure directly, but its excretion is normally accompanied by the anion chloride,
So the Urine Anion Gap is calculated by the sum of Urine Sodium plus Urine Potassium less Urine Chloride (Na+ + K+ – Cl)
Bicarb is omitted in this formula because urine is generally acidic, and Bicarbonate is generally negligible.
Note that urine values are different from serum values, so these results cannot be interchanged in the formula.
Typical values of Urine Anion Gap:
0 to 10 mmol/L (or mEq/L), and values over 10 mean the body is more acidic (undesirable).
Urine Anion Gap result over 20 indicates metabolic acidosis, usually when the kidneys cannot excrete ammonia, e.g. in renal tubular acidosis.
A negative Urine Anion Gap can be used as evidence of increased NH4+ excretion.
A zero or negative Urine Anion Gap while the Serum Anion Gap is positive, suggests a high urinary NH44+ (probably caused by gastrointestinal, e.g. diarrhea or vomiting).

Glucose

The amount of glucose in the blood at the time of the test. A relatively constant level of glucose must be maintained in the blood.
For a more helpful test, see the HbA1c test.
Should always be a fasting test, minimum 2 hours after a meal, but preferably fasting overnight after at least 6 hours without food or drink other than water.
Normal range is around 3.2 to 5.5 mmol/L (70 to 100 mg/dL in USA labs).
Results below this range is hypoglycaemic (low blood glucose) and urgent medical attention is required.
Elderly people generally test higher, even if they are healthy.
Levels are affected by food or drink recently ingested, recent exercise, stress levels, medications, hydration and the time of day.
Ranges above 5.5 are hyperglycaemic (high blood glucose).
5.5 to 6.9 is considered pre-diabetic, and over 6.9 is diabetic.
Doctors normally prescribe Metformin (with nasty side-effects) rather than refer to a nutritionist who can advise elimination of sugar,
high-carbohydrate and processed foods from the diet, and use magnesium supplements,
which in nearly every case will eliminate diabetes as well as reduce excess weight and improve cardiovascular health and reduce risk of dementia.

Random Glucose Level

Also called RBC (Random Blood Glucose) or CBG (Casual Blood Glucose). A recent meal is assumed, so has a higher reference range than the fasting glucose test above.
Typical range for a normal adult is 4.4 – 7.8 mmol/L (Australia) or 79 – 140 mg/dl (USA).
Results above this may not indicate diabetes (could also be a recent high sugar or carbohydrate meal), but a fasting glucose test should then be carried out to confirm if diabetes is suspected.

The Kidney Function Group of Tests

Note that kidney issues often show no symptoms until they are both working as low as 10% capacity,
so regular testing is advised to capture problems early while changes to diet, medications and lifestyle can correct the issues.
Some symptoms of kidney dysfunction include fatigue, swelling and hypertension.
The Kidney Panel usually consists of the following tests:
Electrolytes, –

Minerals include:

Phosphorus, vital for energy production, muscle and nerve function, bone growth and as a buffer to maintain the acid-base balance.
Calcium, essential for the proper functioning of muscles, nerves, and heart, also for blood clotting and bone formation.

Protein
Albumin – a protein that makes up about 60% of protein in the blood. Roles include keeping fluid from leaking out of blood vessels, and transporting hormones, vitamins, drugs, and ions like calcium throughout the body.
Waste products
Three calculated values may also be reported with a renal panel:
Estimated Glomerular Filtration Rate (eGFR) – a calculated estimate of the actual glomerular filtration rate (GFR, the amount of blood filtered by the glomeruli in the kidneys per minute) derived from creatinine levels in the blood; the formula takes into account the person’s age, gender, race, and sometimes height and weight.

Urea, or BUN (Blood Urea Nitrogen)

Urea, or BUN (Blood Urea Nitrogen) is a nitrogen-containing waste product that forms from metabolism of protein.
Released by the liver into the blood and is carried to the kidneys, where it is filtered out of the blood and eliminated in the urine.
Normal Range: 2.5 to 7.1 mmol/L or 10 to 20 mg/dL (USA labs). Not always tested in Australia.
High levels indicate poor kidney function, and results should be looked at in combination with the creatinine test.
May also be influenced by function.
Many medications and/or a high-protein diet can also raise BUN levels.

BUN/creatinine ratio

Urea (BUN)/creatinine ratio is a comparison of urea (nitrogen) to creatinine content in the blood.
Normal Range: Ratio of BUN to creatinine: 10:1 to 20:1 (men and older individuals may be somewhat higher)
Shows if kidneys are eliminating waste correctly.
High levels of creatinine, a by-product of muscle contractions, are excreted through the kidneys and suggest reduced kidney function.

Creatinine (Serum)

To determine if kidneys are functioning normally.
This test is used in conjunction with Urea and eGFR tests.
This is a waste product, disposed of by the kidneys, so any elevation may indicate kidney problems.
Creatinine is not re-absorbed or recycled, so if the kidneys cannot eliminate creatinine through the urine, levels will continue to rise.
High levels may also be caused by muscle problems, such as rhabdomyolysis (breakdown of muscle) often caused my statin medication.
Body builders may take Creatine supplements (not the same thing as creatinine) which is a natural product made by the body, but breaks down into creatinine,
and will increase the creatinine test results. Creatine has been shown to increase water retention in some people, causing swollen ankles,
but this mainly occurs in those with poor kidney function, and the doctor should order a series of kidney tests.
Certain chemicals can cause analytic interference of Creatinine measurements.
Ketoacids (such as occurring in diabetic ketoacidosis) and 5-aminolevulinic acid (sometimes administered for photodynamic therapy) interfere with the alkaline picrate (Jaffé) assay of creatinine, giving falsely high readings and the incorrect impression of kidney dysfunction.
The issue does not arise with enzymatic creatinine measurements, so different labs using either the Jaffé assay or the enzymatic method will give different results.
Note also that Amlodipine and some similar blood-pressure medications, cause increased Creatinine, often resulting in swollen ankles, indicating kidney dysfunction, especially for those who are male, over 60 years old, and also take the drug Furosemide, and also have high cholesterol.
Other drugs such as Cimetidine, Trimethoprim, Corticosteroids, Pyrimethamine, Phenacemide, Salicylates, and active Vitamin D metabolites, can also increase plasma Creatinine without influencing glomerular filtration, thought to be through inhibition of Creatinine secretion, so a urine creatinine test would perhaps show a reduced level of creatinine compared to the increased serum results.
This is the blood (serum) test. See also the Creatinine Urine test below.
Normal range:
Men (18 to 60 years): 80 – 115 umol/L (Australia) or 0.9 to 1.3 mg/dL (USA)
Women (18 to 60 years): 53 – 97 umol/L (Australia) or 0.6 to 1.1 mg/dL (USA)
The elderly may test a little lower.
Men (60 to 90 years): 71 – 115 umol/L (Australia) or 0.8 to 1.3 mg/dL (USA)
Women (60 to 90 years): 53 – 106 umol/L, some labs say 45 to 90 umol/L (Australia) or 0.6 to 1.2 mg/dL (USA)

Creatinine (Urine)

Kidneys filter creatinine from the blood, excreting it through urine. The creatinine urine test may detect kidney malfunctioning.
This test is normally performed as a 24-hour urine test.
All urine is collected for 24 hours, stored in the refrigerator (not frozen), mixed and the result poured into a small sample bottle and labelled as such.
If a 24-hour test cannot be performed, a mid-stream urine sample from the first morning urination can be used, but results will not be as accurate, as urine creatinine levels change normally throughout the day.
Creatinine is a metabolic waste product of muscle metabolism and meat consumption, so those with a high protein diet, or very muscular, or have muscle damage, will have higher levels.
Urine creatinine levels may fluctuate depending on race, muscle mass, diet and certain medications.
Labs usually do not specify a normal range, as results can vary, and the test is generally used in conjunction with other tests to determine kidney function.
Normal range (subject to many factors, check with your doctor or laboratory if results appear out of range):
Men: 1.7 to 28 mmol/L (20-320 mg/dL USA labs)
Women: 1.7 to 24 mmol/L (20-275 mg/dL USA labs)

Creatinine Clearance

How fast creatinine is cleared by the kidneys, another way of estimating kidney function.
Low test results may mean kidney problems such as tubule damage, kidney failure, restricted kidney blood flow, kidney filtering unit damage, dehydration, obstructed bladder outlet, heart failure.
Normal Range:
Men: 97 to 137 ml/min. (all labs)
Women: 88 to 128 ml/min. (all labs)

eGFR (Glomerular Filtration Rate)

Used to screen for early kidney damage and to monitor kidney status. Performed by the creatinine test and calculating the estimated Glomerular Filtration Rate.
The creatinine test is ordered as part of a routine metabolic panel, or along with a Blood Urea Nitrogen (BUN) test to evaluate the kidney status,
or to monitor those with known chronic kidney disease and those with diabetes and hypertension which may lead to kidney damage.
A low rate means some kidney damage has occurred.

KIDNEY DAMAGE STAGE DESCRIPTION GFR OTHER
1 Normal/minimal kidney damage with normal GFR 90+ Protein or albumin in urine are high, cells or casts seen in urine
2 Mild decrease in GFR 60-89 Protein or albumin in urine are high, cells or casts seen in urine
3 Moderate decrease in GFR 30-59
4 Severe decrease in GFR 15-29
5 Kidney failure under 15

Related test: Cystatin C

Often used as an alternative test to eGFR.
Kidney damage can cause gynecomastia in men due to decreased testosterone levels, leading to greater estrogen/testosterone ratio.

Cholesterol (total)

A fairly meaningless test – see Cholesterol (Lipid) Testing below.
Labs use around 0.0 to 5.4 nmol/L for a normal range, but very low levels, or rapidly dropping levels can indicate a higher risk for cancer, anxiety, depression, and if pregnant, premature birth and low birth weight.
High levels are a signal for doctors to prescribe statin drugs, when the cause should be investigated
(inflammation, which causes the body to make more cholesterol to repair the damage caused by inflammation).
Many smarter doctors are now agreeing with the science: Cholesterol is not bad, and unless levels go into the 8.0 area and above, there is not a huge problem as long as HDL levels are high enough.

Urate (Uric Acid)

Produced by the breakdown of purines. Normal range, Men: 0.208 to 0.416 mmol/L (3.5 to 7.0 mg/dL), desired range less than 0.36mmol/L (6.0 mg/dL)
Sometimes units given as µmol/L which is mmol/L / 1000, e.g. 0.416 mmol/L = 416 µmol/l.
Excess uric acid (Hyperuricemia) is excreted by the kidneys and disposed in the urine and faeces.
It is normal to have some Uric acid in urine.
High uric acid causes crystals to form in the joints – a painful condition known as gout, often in the big toe joint,
although not everyone with high uric acid has a problem. Some with levels up to 0.571 mmol/L (9.6 mg/dL) still have no gout.
Men are much more likeley to have gout than women up tp ages 50 to 60,
probably because testosterone aggravates gout, and men lose a large amount of testosterone and often gain excess body fat in senior years.
High Uric acid can increase risk of diabetes, cardiovascular disease and ammonium acid urate kidney stones.
High Uric acid (Hyperuricemia) can be caused by:

  • Obesity or excess body fat
  • High purine foods
  • Thiazide diuretics (hydrochlortiazide)
  • ACE inhibitors and beta blockers
  • Loop diuretics (including Furosemide or Lasix®)
  • Anti-TB (Tuberculosis) drugs
  • Chemotherapy drugs
  • Immune suppressing drugs
  • Other drugs including:
    • Acitretin
    • Didanosine
    • Filgrastim
    • L-dopa
    • Omeprazole
    • Peg-interferon + ribavirin
    • Sildenafil
    • Teriparatride
    • Ticagrelor
    • Topiramate
  • Vitamin B3 (niacin), mainly high doses
  • Insulin resistance (type 2 diabetes)
  • Fasting or rapid weight loss, usually temporary
  • Low dose Aspirin (60 to 300mg daily)
  • Fructose (generally from fruit juices or foods sweetened with HFCS – High Fructose Corn Syrup)
  • Apples, peaches, pears, plums, grapes, prunes, dates all contain fructose, but OK in moderation
  • Yeast containing foods: Vegemite, Marmite, bread
  • Xylitol, a natural sweetener
  • Glycerol
  • Sorbitol
  • Testosterone
  • Recent surgery or trauma

Low uric acid (Hypouricemia) may indicate, cause or be caused by:

  • Hyperthyroidism
  • MS (Multiple Sclerocis)
  • Fanconi Syndrome (Kidney disease, genetic, from some drugs or heavy metals),
  • Myeloma (Cancer of blood plasma cells in bone marrow)
  • Nephritis (Kidney inflammation)
  • Wilson’s Disease (genetic, causing copper accumulation)

Phosphate (Phosphorus)

Normal range: 0.8 to 1.4 mmol/L (2.5 to 4.3 mg/dL)
Phosphorus is important for bone health, energy storage, nerves and muscles, and related to calcium levels, which should be read in conjunction.
High phosphorus (Hyperphosphatemia) may indicate kidney or parathyroid problems, alcohol abuse, long-term antacid use,
excessive diuretics, malnutrition or high/low vitamin D.
Meat, dairy products and other foods contain phosphorus, so insufficiency (Hypophosphatemia) is rare.
Liver disease and low vitamin D can cause high or low phosphorus levels.
Low phosphate (Hypophosphataemia) can be caused by poor nutrition, low vitamin D3, poor absorption.
Extra-low (less than 0.4 mmol/L) may be caused by redistribution into cells, kidney losses or low intake.
Often accompanies other electrolyte deficiencies.
The test results will not determine the cause of high or low readings, so more tests are then required.

Total Calcium

The amount of calcium circulating in the blood, normal range 2.10 to 2.55 nmol/L (USA labs 9.0 to 10.5 mg/dL). Elderly people usually test a little lower.
Calcium levels over 3.0 (Hypercalcaemia) are a cause for further investigation, as high levels can increase risk of blood clots, and may indicate other problems.
Possible causes are Sarcoidosis, too much or too little Vitamin D, kidney problems, over-active thyroid or parathyroid, some cancers (such as lymphoma, parathyroid, and pancreatic).
This test does not tell us how much calcium is in the bones and teeth, where most of the calcium is stored, only the amount in the blood.
If out of range, additional tests may be required for ionised calcium, urine calcium, phosphate, magnesium, vitamin D and PTH (parathyroid hormone).
Normally, the Parathyroid hormone (PTH) and vitamin D control blood calcium levels within a narrow range of values. See the PTH section for more info.
Low calcium (Hypocalcemia) may be caused by low vitamin D3, poor intestinal absorption, the amount of phosphate in the blood, anorexia or poor nutrition.
Low calcium may cause cramps and twitching.

Calc.IC – Ionised Calcium

Normal Range 1.10 to 1.25 nmol/L
Usually included in the standard tests.
This test result in normal people is inversely related to PTH (parathyroid hormone) so the PTH test is required if Ionised Calcium is out of range.

The Liver Function Group of Tests

These tests should be called “Liver Damage Tests” instead of “Liver Function Tests” as they only report problems when damaged liver cells leak enzymes into the blood, and the
liver can lose significant function before abnormalities show up in these tests: Bilirubin, CGT, AST, ALT and ALP.
These tests are looked at in conjunction with the blood proteins: Globulins, Albumin and Fibrinogen.

Albumin

Normal range: 37 to 48 g/L. USA labs often say 3.9 to 5.0 g/dL (39 to 50 g/L)
A protein made by the liver. Helps stop blood from leaking out. A high number indicates good health.
Results at the low end of this range indicates poor health. Possible causes of low numbers are:

  • Liver or kidney disease
  • Malnutrition
  • Malabsorption in the intestines

The doctor may then order a prealbumin test and other tests to determine the nature of the problem.

Urine Albumin

Reference range: 0 to 25.0 mg/L (Australia and USA)

Albumin/Creatinine Ratio – Urine

Reference range: 0 to 3.5 mg/mmol

Globulins

Simple proteins found in the blood. Range depending on many factors: 21 to 41 g/L
Globulins are a family of globular proteins with a higher molecular weight than albumins. They are insoluble in pure water, but dissolve in dilute salt solutions.
Some are produced in the liver, others are made by the immune system.
There are four different globulin groups: gamma (immune system), beta (hormone transport), alpha-1 and alpha-2 (clotting function).
Individual groups may be tested if further diagnosis is required.
Low test results may indicate liver disease, IBS (Irritable Bowel Syndrome) or inability to digest or absorb proteins, celiac disease, cancer, anaemia, kidney disease, poor immunity and more.
High test results may indicate a chronic or infectious disease, leukemia or other bone marrow disease, autoimmune disease like lupus or rheumatoid arthritis, kidney or liver disease, or carcinoid tumours.

A/G ratio (albumin/globulin ratio)

Healthy ratio: A little over 1.0, which means more albumin than globulin.
The blood contains two types of protein: albumin and globulin.
The A/G ratio test compares levels of these proteins with one another.

Serum Protein

Typically total proteins are the sum of albumin and globulin.
Normal Range 64 to 83 g/L
High levels can be caused by dehydration or other factors. See the notes on Albumin and Globulin.
Low protein is when Albumin and/or Glogulin levels are low, and indicates poor health.

Total Bilirubin

Bilirubin is the yellow-coloured pigment in the bile, produced as the liver breaks down heme from hemoglobin in old red blood cells,
and gives stools the normal brown colour as it is excreted.
Bilirubin is a lipophilic antioxidant, reducing lipid peroxidation (oxidative degradation of lipids),
where free radicals steal electrons from lipids in cell membranes, causing cell damage.
Low bilirubin is associated with an increase in all-cause mortality, but most doctors do not know this,
they say that low levels mean better health!
Range (Total): 2 to 20 umol/L or USA Labs: 0.3 to 1.9 mg/dL.
Range (Direct) 1.0 to 5.1 umol/L or USA Labs: 0 to 0.3 mg/dL.
Different ranges apply for babies and between labs.
High levels can indicate poor function of liver and kidneys, problems in bile ducts, and anaemia, and usually indicate the need for further tests.
However, if further tests reveal no issues with liver or other organs, high bilirubin is a good thing, leading to higher glutathione and a longer, healthier life.
Bilirubin in the blood circulates in two forms:
Indirect (unconjugated) bilirubin – insoluble in water – changed in the liver to a soluble form.
Direct (conjugated) bilirubin – soluble form – made in the liver from indirect bilirubin.
Total bilirubin and direct bilirubin levels are measured directly in the blood, while indirect bilirubin is calculated from the total less the direct bilirubin.
High bilirubin (hyperbilirubinemia) cause skin and/or whites of the eyes to appear yellow (jaundice),
caused by liver disease (hepatitis), blood disorders (hemolytic anemia), or blockage of the bile ducts from the liver to the small intestine.
Hyperbilirubinemia in a newborn baby may cause brain damage (kernicterus), hearing loss, problems with eye movement muscles,
physical abnormalities, and even death.
Babies who develop jaundice can be treated with phototherapy (special lights or a “light blanket”) or a blood transfusion
to lower their bilirubin levels.
When the liver is mature enough to control bilirubin, all symptoms disappear and no further treatment is required.
Standard blood tests only test for total bilirubin and other tests are prescribed only if results or symptoms determine the need for more tests.

GGT (Gamma-Glutamyltransferase)

A very sensitive enzymatic indicator of liver disease.
Common reasons for elevated values can indicate alcoholic cirrhosis (from heavy drinking, or consumption of other liver-toxic substances).
A healthy liver can only detox one alcoholic drink in two hours, so those people who consume two drinks in one hour have a quadruple liver-overload condition.
Used to determine if raised alkaline phosphatase is due to skeletal disease (normal range GGT) or indicate hepatobiliary disease (raised GGT).
Normal range varies – small children approx 7 to 19 U/L (male), 6 to 29 U/L (female) with the high side increasing with age to 50 and above for the elderly.
Adult level range usually around 0 to 45 U/L but always check with the lab and the doctor for your appropriate range.
(GGT) activity is seen in any and all forms of liver disease, although the highest elevations are seen in intra- or post-hepatic biliary obstruction.
Excess alcohol consumption will increase CGT.
High GGT combined with high ALP indicates some form of hepatobiliary disease.

ALP (Alkaline Phosphatase)

Normal range: varies from 45 to 115 U/L (adult male) and 55 to 142 U/L (adult females). USA labs often say 44 to 147 U/L.
OPTIMAL range: depends on age. Adolescents have a much higher ALP when rapidly growing compared to a fully grown adult because the osteoblasts are laying down bone very rapidly.
For adults, 50 to 75 is considered a reasonable optimal range.
Children and female ranges are very varied so always check with the lab for the correct range for your age and sex.
The SI units IU/L are the same as the US units U/L.
ALP is a group of enzymes present mainly in liver (isoenzyme ALP-1) and bone (isoenzyme ALP-2), with lesser amounts in the intestines (isoenzyme ALP-3),
the placenta, the kidneys (in the proximal convoluted tubules) and in white blood cells.
When any of these cells are damaged, ALP is released into the bloodstream.
The ALP enzyme is synthesised in the hepatocytes adjacent to the biliary canaliculi.
Elevations typically indicate problems with bone disease, the liver or obstruction.
Obstruction can be in the biliary tract, which may occur within the liver, the ducts leading from the liver to the gallbladder,
or the duct leading from the gallbladder through the pancreas that empty into the duodenum (small intestine). Any of these organs (liver, gallbladder, pancreas, or duodenum) can be involved.
High ALP can indicate:

  • Liver, Obstruction or Congestion:
    • Cholestasis (decrease in bile flow)
    • Obstructive jaundice (the liver responds to biliary obstruction by synthesising more ALP)
    • Oral contraceptives
    • Obstructive pancreatitis
    • Hepatitis/Mononucleosis/CMV
    • Congestive heart failure
    • Parasites
    • Malignancy involving liver
    • Giant Cell Arteritis, especially with Cholestasis
  • Bone / Skeletal issues involving osteoblast hyperactivity and bone remodeling:
    • Paget’s disease
    • Rickets
    • Shingles (Herpes Zoster virus)
    • Osteomalacia
    • Osteogenic sarcoma
    • Fractures
    • Osteoporosis treatment
    • Adrenal cortical hyperfunction
  • From other conditions:
    • Pregnancy (late, as the placenta produces ALP)
    • Hyperparathyroidism
    • MEN II (Multiple endocrine neoplasia)
    • Leukemia
    • Lymphoma
    • Amyloidosis
    • Granulation tissue
    • Gastrointestinal inflammation (Inflammatory Bowel Disease, Ulcerative colitis, Crohn’s, ulcers)
    • Systemic infections (sepsis)
    • Sarcoidosis
    • Rheumatoid arthritis
    • Hodgkin’s Lymphoma, gynecologic malignancies and some other cancers
    • Acute tissue damage in the heart or lungs (myocardial or pulmonary infarctions)

Low ALP can indicate:

  • Zinc deficiency
  • Hypothyroidism
  • Vitamin C deficiency or Scurvy
  • Folic acid deficiency
  • Excess Vitamin D intake
  • Low phosphorus levels (hypophosphatasia)
  • Celiac disease
  • Malnutrition with low protein assimilation (including low stomach acid production/hypochlorhydria)
  • Insufficient Parathyroid gland function
  • Pernicious anemia
  • Vitamin B6 insufficiency
  • Hypophosphatasia
  • Protein deficiency
  • Wilson disease

ALT (Alanine Aminotransferase)

Also known as Serum Glutamic Pyruvic Transaminase, or SGPT
Normal range: adult males: 7 to 55 U/L, adult females: 7 to 45 U/L depending on age and lab.
Some USA labs say 8 to 37 U/L, some Australian labs say 0 to 54 U/L.
OPTIMAL Range: 20-30 U/L
This test checks for elevated liver enzymes. Note that if the patient is taking high-dose
Niacin, it is normal to have elevated ALT.
Of course, it is NOT normal to have VERY high ALT, and medical advice should be sought, but a little over the normal range can be contributed to Niacin,
and this is not a problem by itself, but should be taken into account if there are other abnormal liver tests.
The other common cause for high ALT is drinking too much alcohol. A healthy liver can detox one alcoholic drink in around 2 hours.
If the patient has 4 drinks in 4 hours, then the liver is double-overloaded and suffers accordingly.
The solution? Stop drinking alcohol!
Diagnosis of liver disease associated with hepatic necrosis (hepatic = liver, necrosis = cell death).
When the liver is fine, results are within range, the lower the better.
High ALT is seen in parenchymal liver diseases where hepatocytes are destroyed, with values often ten times above normal, sometimes as high as one hundred times the upper reference limit.
In some liver infections or inflammatory conditions, ALT is usually higher or as high as AST, and the ALT/AST ratio (normally less than 1), becomes greater than 1.
ALT increases usually occur prior to appearance of symptoms of disease. The liver can lose a lot of function before symptoms appear.
High ALT results can be from other causes, such as:

  • Liver damage such as viral hepatitis
  • Acute lymphocytic leukemia (ALL)
  • Lead poisoning
  • Drug reactions
  • Carbon tetrachloride exposure
  • Large tumor necrosis (decay)
  • Shock
  • Mononucleosis
  • Excessive alcohol consumption
  • Panadol, Parecetamol, Acetaminophen, Tylenol
  • Rapidly growing children
  • Cirrhosis
  • Liver cancer
  • Heart attack
  • Thyroid disease
  • Polymyositis
  • Severe burns
  • Pancreas, Kidney or muscle injury
  • Strenuous exercise
  • Antibiotics, statins, chemotherapy, aspirin, narcotics, and barbiturates
  • Herbs such as echinacea or valerian
  • Injections into a muscle
  • Recent cardiac catheterization or surgery
  • Hemochromatosis
  • Liver ischemia (Lack of blood flow to the liver)
  • Taking high strength Niacin

ALT values are normally compared to ALP (alkaline phosphatase) and AST (aspartate aminotransferase) to diagnose which form of liver disease is present.

AST (Aspartate aminotransferase)

Also called SGOT, Serum Glutamic-Oxaloacetic Transaminase, GOT, Aspartate Transaminase

Normal range: around 8 to 48 U/L, some labs say 0 to 45 U/L, some USA labs say 10 to 34 U/L
An enzyme found in the liver, heart, skeletal muscle and kidneys, in both the cytoplasm and mitochondria of cells.
Not always related to the liver. Elevated values typically mean disease of the heart, muscle, liver, or all.
Mild tissue injury caused the main form of AST to be the cytoplasm form, and major tissue damage results in higher mitochondrial enzyme.
High AST may be found in myocardial infarction (heart attack), acute liver cell damage, viral hepatitis and carbon tetrachloride poisoning.
More moderate rise in AST can be caused by muscular dystrophy, dermatomyositis, acute pancreatitis and crushed muscle injuries.

LD or LDH (Lactate Dehydrogenase)

Normal range: Approx 110 to 230 U/L depending on the lab.
Lactate dehydrogenase is an enzyme, found in almost every living cell, but mostly in the heart, liver, muscles, kidneys, lungs and blood (erythrocytes).
LDH catalyzes the conversion of lactate to pyruvic acid and back, as it converts NAD+ to NADH and back.
A dehydrogenase is an enzyme that transfers a hydride from one molecule to another.
Used to monitor changes in tumour burden after chemotherapy.
High LD is common in cancer patients but results are too erratic to formally diagnose cancer.
High LD generally means that mitochondrial function is compromised, meaning that newly diagnosed cancer patients will have a poor outlook.
High LD is also seen in:

  • Megaloblastic anemia
  • Untreated pernicious anemia
  • Hodgkin’s disease
  • Abdominal and lung cancers
  • Severe shock
  • Hypoxia (reduced oxygen)

Moderatly high LD is seen in:

  • Myocardial infarction (heart attack)
  • Pulmonary infarction
  • Pulmonary embolism
  • Leukemia
  • Hemolytic anemia
  • Infectious mononucleosis
  • Progressive muscular dystrophy
  • Liver and kidney disease

Other tests outside the standard blood tests

Vitamin D3 (25-hydroxycholecalciferol) Testing

Not normally tested unless it is asked for, but given that two-thirds of Australians have less than the minimum vitamin D3,
and nearly 98% have less than optimum levels, and almost 97% of all cancer patients have less than optimal vitamin D3, this test should be mandatory.
Those most at risk include:

  • Those who shower every day, as showering washes off the pre-vitamin D compounds absorbed from sunlight the day before
  • Those with dark skin or wear clothing covering most of the body
  • Those who slip, slop, slap, which is the WRONG thing to do except on cloudy days
  • Those who live further from the equator, where the sun is seldom high in the sky
  • Those who are aged 50 or older, because as we age, we lose the ability to synthesise vitamin D from sunlight
  • Those who work nights and sleep in the day, restricting sunlight exposure
  • Those taking statin medications for cholesterol, as these medicationss prevent the liver from making the ingredients to manufacture vitamin D

Most of the labs say we need from 60 to 160 nmol/L, some medical institutions say we need 20 to 95, and most doctors accept the lab results.
Some labs are now revising their optimal range upwards: 75 to 250 nmol/L.
What we REALLY need is: For healthy bones, we need minimum 90, up to 175.
The OPTIMAL range for IMMUNITY to all disease including most cancers is 125 to 175 nmol/L, preferably in the high end of this range.
For short-term treatment of cancer or other serious illness, we should aim for levels in the 160 to 250 range.
While it is true that vitamin D can be toxic in very high doses, the average dose sold in most stores is 1000 IU which is nowhere near enough.
LeanMachine recommends 5000 IU Vitamin D3, typical cost approx. $20 for 360 gelcaps (almost a year’s supply) at 5 times normal strength.
No cases of toxic overdose of vitamin D3 has been recorded at less than an intake of 40,000 IU.
LeanMachine also gets a lot of sunlight, but still needs this dosage to maintain levels of around 150 to 160 nmol/L.
The body’s organs have the ability to turn Vitamin D into Calcitriol, which goes to work repairing damage from infections, diseases and cancers.
Vitamin D, D2 or D3 – vitamin D3 is the ONLY vitamin we should take as a supplement.
Avoid products “fortified with vitamin D” as these almost always contain vitamin D2, a cheap, synthetic version of natural D3, which not only do not do the same job as real D3,
they actually block absorption of real D3, leaving us D3 deficient.
For the full article on vitamin D3 go to Vitamin D3 article.

Vitamin B12 (Cobalamin)

Unlike other B group vitamins which are flushed away in urine daily, B12 can last for months in the body, even though it is also water-soluble.
People who have problems taking supplements can get a B12 injection every 3 months.
Normal Range 148 to 616 pmol/L depending on the lab and other factors.
Low levels may be caused by malabsorption in the small intestine, low stomach acid, taking antacids, hyperthyroidism, parasites, pernicious anaemia or dietary insufficiency.
Vegans and vegetarians do not get B12 from plant foods except small amounts in mushrooms.
High levels may be caused by liver disease (cirrhosis or hepatitis), some types of leukemia or taking too many B12 supplements.
Health Departments recommend 2 to 5 mcg daily, but LeanMachine takes 1000 mcg daily, with test results more than double the maximum normal blood range at around 1500 pmol/L.
High doses of B12 do no harm, unlike folate – see next section.
Note: Cheap B12 supplements contain a small amount of cyanide, which is flushed away completely harmlessly in the urine.
Of course, no one should take several bottles at once, and any excess probably offers no extra benefit.
LeanMachine only recommends the
active methyl B12 which has no cyanide.
Essential as we age, because we get older, we produce less stomach acid, so produce less B12.
Up to 30% of people over 50 cannot correctly absorb and make B12 and are deficient, so supplementation is essential in the elderly.
Studies show that over 3% of people over 50 are SEVERELY deficient in B12.
Not normally tested unless we ask for it, but very important for most people over 45 or for vegans and vegetarians.
B12 is chemically the most complex vitamin, and the only water-soluble vitamin that is stored in the body for months or years, but vegetarians and especially vegans as well as most people over 50 should supplement.
Essential for anyone taking PPI (Proton Pump Inhibitors) like Nexium, which reduce stomach acid – giving short-term relief for heartburn, but impacting B12 production and adequate nutrition.
The only effective way to treat heartburn is to eat less, and only eat nutritious food.
Should always be tested along with folate, as high folate can mask B12 deficiency and vice versa – see folate test below.
Recommended : Active B12

Folate (Vitamin B9) – Testing

NOTE: Folic Acid is a cheap substitute for folate, but is not the same thing. Read more below…
Range: Folate in plasma: 7 to 30 nmol/L, folate in Red Blood Cells: 317 to 1422 nmol/L.
High folate may mask a B12 deficiency as B12 is used to process folate. Low B12 means folate is not used and builds up in the blood.
Low folate can be caused by eating disorders, alcoholism, liver disease, celiac disease, chrohn’s disease, malabsorption issues, or low vitamin C intake.
Some sources say excess folate is not a problem, but LeanMachine recommends a maximum intake of 1000 mcg daily from all sources.
One source is our Active Folate
Folate is famous for helping prevent neural tube defects in the developing foetus (e.g. Spina Bifida) when given to pregnant women.
Also helps with limb deformities, nerve problems, tumours and some birth defects.
Mothers should take Folate and B12 before, during and if breastfeeding, after pregnancy.
Because foetus problems from folate deficiency occur at just 3 weeks into the gestation period, this can be too late to start taking folate, so every woman of child-bearing age should supplement with folate.
Not so famous is the fact that most healthy people reaching 100 years of age are high in folate.
Folate benefits both sexes, helping to reduce levels of homocysteine (a marker of cardiovascular disease), especially in conjunction with B6 and B12.
Folic Acid and Folate are NOT the same thing.
Folate comes naturally from various foods such as spinach, asparagus, chickpeas, beans, and broccoli.
Folic Acid generally comes from cheap supplements.
Note: Many people have a defective MTHFR Gene which prevents the partial or full conversion from folate to the active form, MTHF ((6S)-5-MethylTetraHydroFolate) or Active Folate
This gene can be inherited or due to lifestyle, and up to 40% of the population have varying forms, producing very mild to very severe symptoms.
We can ask for a MTHFR (also known as MethylTetraHydroFolate Reductase) test, or simply use the Active Folate.
Low folate produces symptoms such as high homocysteine, hypothyroidism, lethargy, impaired cognitive function, and mood disorders.
LeanMachine recommends only the active form of Folate.
For those with the MTHFR issue, taking ordinary folate or folic acid will often make the problem worse.

NOTE: Out of range B-12 can mask testing results of Folate and vice versa, so BOTH need to be tested at the same time.

Homocysteine Testing

Range: 4 to 17 mcmol/L (normally higher in men than women)
Deficiencies in Folate and B12 cause high homocysteine, an amino acid.
High homocysteine can be caused by low folate and/or B12, too much alcohol, hypothyroidism, kidney disease, Alzheimer’s disease, homocystinuria, or cancers.
Low homocysteine can be caused by some medications, or excess folic acid, B12 or Niacin.
Read more about B-12, B-6, Active Folate and Homocysteine here.

Iron Testing

There are three different iron test ranges:
Serum Iron: Men: 12.5 to 31.3 nmol/L, Women: 8.9 to 26.8 mcmol/L
TIBC (Total Iron Binding Capacity) Men and Women: 45 to 76 mcmol/L.
Transferrin Saturation: Men 10% to 50%, Women 15% to 50%.
A test to see how well iron is metabolised in the body, often tested in conjunction with the Ferritin test – see below.
Out of range values can be diet, lead poisoning, liver, kidney, rheumatoid arthritis, hemochromotosis, anaemia, bleeding, supplement overdose.

Ferritin Testing

Normal Range: Men 18 to 270 mcg/L, Women 18 to 160 mcg/L, but some labs say 15 to 350 for men, 15 to 300 for women.
However, LeanMachine recommends “Goldilocks” levels.Not too low, not too high. Optimum is between 20 and 80, preferably between 30 and 60. Anything outside this range can cause problems.
Ferritin is a protein that binds to iron in the blood, often tested in conjunction with the Iron test above.
High iron in the blood, pancreas or heart can cause many health problems, and eventually death.
High ferritin may be caused by:

  • Hemochromotosis (over 1000 mcg/L)
  • Liver disease (cirrhosis or hepatitis)
  • Hodgkin’s disease
  • Leukemia
  • Infection
  • Arthritis
  • Lupus
  • Iron-rich diet
  • Taking unwarranted iron supplements
  • Receiving blood transfusions

Low ferritin can be caused by:

  • Bleeding (externally or internally)
  • Heavy menstrual periods
  • Pregnancy
  • Iron-deficient diet (such as vegan or vegetarian)
  • Blood donations
  • Loss through the skin (psoriasis)
  • Loss by excretion through the urine

High Iron/Ferritin has two basic treatments: Blood-letting (donating blood at the Red Cross), or taking
IP6 (Inositol Hexaphosphate) to chelate excess iron.
Many supplements can help chelate heavy metals from the body, but IP6 appears to be the ONLY way of effectively chelating iron with supplements.
Blood donations may be undesirable (e.g.religious reasons) or not allowed (e.g. if the donor has HIV or other disease, has recently been to an undesirable country, or is too old or otherwise ineligible.
Prescription drugs can be used, such as:

  • Deferoxamine (Desferal®), administered by subcutaneous (under the skin) infusion using a small portable pump, worn for 8-12 hours daily, usually while sleeping.
  • Deferasirox, either as:
    • Exjade®, a tablet dissolved in juice or water and taken orally once daily
    • Jadenu®, a tablet taken daily with water or other liquids
  • Deferiprone or L1 (Ferriprox™)

Side effects can be unpleasant or even damaging to health using prescription drugs. Not all drugs are approved in all Countries.
IP6 appears to be the safest and most effective, and also helps treat cancer, diabetes, depression, osteoporosis, heart disease, and kidney stones.
Parkinson’s patients can improve because of reduction in excess iron, reducing neuronal degradation.

See LeanMachine’s article on Ferritin
NEVER take iron supplements or use any method to increase or decrease iron without a full “Ferritin Study”, and watch for iron in multivitamins or other supplements.

HbA1C

Normal range: 4% to 5.6%
Pre-diabetes range: 5.7% to 6.4%
Diabetic range (controlled): 6.5% to 7%
Diabetic (uncontrolled): over 7%
HbA1C is a measure of how many glucose (sugar) molecules have “stuck” to red blood cells.
As red blood cells die in around 3 months, this gives doctors an insight into how well (or not) the patient’s blood glucose is under control,
as it effectively gives an average for the last 3 months, rather than a simple glucose test which only gives the result based on a moment in time when the blood was drawn.
As such, the HbA1C test SHOULD be given to everyone suspected of being diabetic or pre-diabetic, as this is the best screening method we have.
Unfortunately, our “smart” Australian Government only allows HbA1C testing in patients already diagnosed with diabetes, eliminating the best screening tool for diabetes available!
The reasoning behind this decision is to keep track of how many confirmed diabetics we have in Australia,
but surely it is more important to prevent diabetes in the first place by improving diet and lifestyle before real diabetes damage happens?

Note: People with iron deficiency anemia or other forms of anemia may have distorted results, giving higher than normal HbA1c when there is no high blood glucose.
Some other factors with people having unusual haemoglobin may have distorted high or low results.

Cholesterol Testing

Typical test is a “lipid study” which includes total cholesterol, LDL, HDL and triglycerides.

Total Cholesterol

This is a fairly useless test, but doctors wrongly prescribe statins for anyone with cholesterol over around 5.2 or who are over 50 years old or who have diabetes or heart conditions.
Statins cause depletion of the body’s co-Enzyme Q10, resulting in side-effects such as muscle pain, diabetes, osteoporosis, a weaker heart and more.
Patients on statins may have a slightly less chance of dying from cardiovascular issues, but an INCREASED risk of dying from all other causes.
The result is a poorer quality of life, and most people will not live one day longer.
For instance a woman on statins for over 2 years has double the risk of breast cancer, and other cancer risks are substantially increased.
Anyone on statins has a higher risk of cataracts, muscle and joint pain and many other conditions. Most of these problems are due to the low vitamin D levels caused by statins.
Statins also prevent the liver from producing cholesterol sulfate, which supplies oxygen, sulfur, cholesterol, energy and a healthy negative charge to every cell in the body.
CoQ10 100mg 360 softgels and Vitamin D3 supplements are essential for anyone taking statins.
Eat an organic apple a day instead of taking a statin and you may really “keep the doctor away”.

LDL – Low Density Lipoprotein

Desirable range under 2.0 mmol/L but not as important if HDL levels are high.
Often known as “bad” cholesterol, but has several important jobs in helping create hormones and other beneficial body components.
For decades, LDL has had a bad reputation as the bad cholesterol, when in fact high LDL levels are blamed simply because they are present whenever the body needs repairing, for example an inflamed artery, where LDL goes to patch up the damage by helping to form a clot and preventing a rupture of the artery.
Obviously we need LDL for this and many other bodily functions, so high LDL is simply a warning sign of inflammation, and inflammation is better reduced by exercise and a healthier diet, rather than taking statin drugs,
which force the liver to produce less LDL, and NOT margarine (trans fat) which appears to reduce LDL but INCREASES deadly trans fats which cause cardiovascular disease and DOUBLE the risk of breast cancer and most other cancers.

HDL – High Density Lipoprotein

Desirable range is over 2.0 mmol/L, with most labs stating the reference range 1.0 to 2.2 mmol/L.
Known as “good” cholesterol – High Density Lipoprotein
The main job of HDL is to assist in clearing LDL, triglycerides, trans fats, and other unwanted components from the blood by returning them to the liver for processing.
The liver then converts LDL to bile and most unwanted body products are then eliminated.
Without our “garbage collectors”, the human body would die in 24 hours.
A healthy diet free from sugar, processed foods, trans fats, etc is essential for adequate levels of HDL.
No prescription drug can raise HDL, only exercise and a healthy diet and supplements such as Niacin (Prolonged Release).
Many things can affect HDL test results such as pregnancy, serious illness, stress, accident, heart attack, etc so the patient should wait until 6 weeks after recovery for an accurate result.

VLDL (or VLDL-C) – Very Low-Density Lipoprotein Cholesterol

Desirable range: Less than 0.77 mmol/L or 30 mg/dL.
This is the only “bad” cholesterol, mainly when oxidised, generally caused by a bad diet of sugars and bad fats (Canola oil, margarine, etc).
Can be reported as part of a lipid study to determine risk of coronary heart disease, but not often asked for.
In fact, most regular labs do not test for this at all, instead estimating VLDL as a percentage of Triglycerides (see below).
Because a true test for VLDL is expensive and time-consuming, only a few research labs have the equipment and time to carry out a true test.
High levels of VLDL-C are believed to indicate the presence of lipoprotein remnants (intermediate particles on the pathway of conversion of VLDL to LDL).
High levels of VLDL slow the conversion of VLDL to LDL and may contribute to development of atherosclerosis and coronary heart disease.
Exercise, weight loss, and a healthy diet are the most effective ways to reduce triglycerides and in turn reduce VLDL.

Triglycerides

The amount of fats (lipids) circulating in the bloodstream.
Healthy adults should have triglycerides less than 1.5 mmol/L.
Exercise, weight loss, and a healthy diet are the most effective ways to reduce triglycerides.

CRP (C-Reactive Protein)

Lab range: Less than 8mg/L, but 90% of all healthy people are below 3.0 and 99% below 12 mg/L, and a level below 0.8 mg/L is best.
CRP is a protein produced by the liver in response to inflammation.
High CRP (over 3mg per mL) can mean inflammation, infection, trauma and tissue necrosis, malignancies, or autoimmune disorders.
Often caused by inflammation in the arteries and veins, and can be a marker for possible heart attacks or other cardiovascular disease.
High CRP can be caused by so many things that alone it cannot diagnose any particular disease, but does indicate that further studies are required, and the test should be repeated after 2 weeks to ascertain if the treatment is working, or if the inflammation is getting worse.

A short story: Mrs LeanMachine was in good health, but one day had severe pains in the chest and neck, so bad that she thought she was having a heart attack. Off to the Hospital, about 2 minutes from our home. The doctor on duty was Mrs LeanMachine’s regular doctor and had a good history of her health (previously damaged by years on statins and Nexium) and ran some blood tests, which proved that she had not had a heart attack, but her CRP was 49. Surely this indicated severe inflammation, but she was sent home and told to take pain killers. No follow-up, no further tests, that was it. Later, the pain had subsided, but at my request, a different doctor ordered an ultrasound, and sure enough, the gall bladder was full of stones, including two large stones looking like a pair of black dice (hard black cubes) and about the same size. For gall bladder problems, there are natural treatments, but when the gall bladder is badly inflamed and stones are too large to pass into the bile duct, removal is possibly the best option, especially when the removal can be performed as “keyhole” which is much less invasive than the major surgery required in an emergency if the problem gets worse.
So the gall bladder was removed via keyhole, and recovery was only a few days, and almost full. Careful attention to diet is required after gall bladder removal.

Obesity often causes elevated CRP levels, as fat cells produce signals for the liver to generate more CRP.
Doctors do not normally test for this in Australia (but do so commonly in the USA) so the patient should insist if there are other risk factors for cardiovascular disease or other unexplained symptoms.
Low levels (below 1mg per mL) are considered normal.

Testing for Lyme Disease

Australian Doctors have long insisted that Lyme Disease does not exist in Australia.
This has been proven incorrect as there are countless Australians suffering from this disease, of which there are at least 14 known variants.
There is only one testing laboratory for Lyme Disease in Australia which has not been accredited, so most testing is carried out in the USA.
Lyme disease is generally transmitted through a tick bite, often going un-noticed, as a small tick can be no larger than a full stop on this page.
Tick bites are more common at latitudes North of Sydney, but can happen anywhere. People working or living among tall grass have a higher risk.
For more information, go to www.lymedisease.org.au

PSA (Protein Specific Antigen)

PSA testing has been used for a long time to check for prostate cancer.
However, this test does not always point to a problem, as many men have a high reading and no prostate cancer, while others have prostate cancer but a low PSA reading.
For men in a high-risk category (bad diet, over 60 years of age, overweight, family history of prostate cancer) should be tested on a regular basis if the first test is high. Otherwise healthy men should have the PSA test included with an annual blood work to look for changes.
Although a low PSA result is preferred, we aim to look for any change in the result between tests, say at least 3 months apart. A significant increase in the value is more important than the actual number, as some men have a higher reading which is normal for them, others have a low reading which is normal for them. It is a sudden upward shift that is cause for further investigation.
This PSA test has nothing to do with Benign Prostate Enlargement which is not cancerous, but often affects quality of life by urgent and frequent urination. A high PSA result may be due to Benign Prostate Enlargement or some other condition.
Prostate cancer in men and breast and ovarian cancer in women are all known as estrogen-related cancers. Excess weight is a high risk factor, as every fat cell produces more estrogen, and the problem gets worse as men and women age, with ever-increasing weight gain bringing a higher cancer risk.

Thyroid Testing

The Hypothalamus gland releases TRH (thyrotropin-releasing hormone, which triggers the pituitary gland to release TSH (Thyroid Stimulating Hormone).
Most doctors only ask for a TSH (Thyroid Stimulating Hormone) test, but this test alone is insufficient for an accurate diagnosis.
Generally, doctors only order tests for other thyroid hormones if TSH (Thyroid Stimulating Hormone) is less than 0.5 mIU/L (hyperthyroidism, too much thyroid hormone)
or greater than 4.0 mIU/L (hypothyroidism, not enough thyroid hormone) when actually the top end of the range (hypothyroidism) should be 2.0 rather than 4.0
USA labs often say 3.0 as a top reading, but even this is too high, and some Australian labs say 4.5 is the top end which is way too high.
Note: Supplemental Biotin (part of the B-group vitamins) over 5 5mg daily should stop biotin supplementation at least 36 to 48 hours before blood collection.
These results are just a guide, and the doctor should evaluate results based on each individual’s health, symptoms, history and other factors, including results of other tests required.
Values outside those listed here may still be normal for each individual or laboratory.
Labs can measure TSH, total T4, FT4 (free T4), total T3, FT3 (free T3), T3U (uptake T3) FTI (Free Thyroxine Index), and T3R (Reverse T3) and others.
Almost all of the T4 in the blood is bound to a protein called thyroxine-binding globulin, leaving less than 1% unattached (free).
Total T4 blood tests can measure both bound and free T4. Free T4 affects body functions, but bound T4 does not.
Range for FT4 is approx 9 to 19 pmol/L but varies with the lab and the age of the patient.
FT4 (Free thyroxine) can be measured directly (FT4) or calculated as FTI (Free Thyroxine Index), which indicates the level of free T4 compared to bound T4.
Abnormal amounts of thyroxine-binding globulin is indicated by FTI.
Most T3 in the blood is also attached to thyroxine-binding globulin, and again, less than 1% of T3 is unattached.
Total T3 blood tests measure both bound and free T3 (triiodothyronine).
T3 is usually in much smaller amounts than T4, but T3 has a greater effect on the body’s metabolism than T4.
T4 is considered to be more of a “storage” thyroid hormone, where the body converts T4 to T3 as required.
This area is a huge subject and is discussed in greater detail here: Hyperthyroidism
Hypothyroidism is very common in older adults, and symptoms such as low energy can be attibuted to being a little overweight, or just an off day.
Thyroid tests are not part of the standard blood panel, but may be ordered if the patient reports fatigue and weight gain (hypothyroidism), or weight loss with nervousness or hyperactivity (hyperthyroidism).
Many doctors dismiss low or high test results if they are borderline, but these tests can indicate early thyroid problems.

TSH (Thyroid-stimulating hormone) Range 0.4 to 4.0 uIU/mL (same as mIU/L) Optimal range: 1.0 to 1.5 mIU/L
Total T4 (total thyroxine) Range 12 to 22 pmol/L (4.5 to 12.5 mg/dL) Optimal range: Top half
Free T4 (free thyroxine) Range 9 to 19 pmol/L (0.8-1.8 ng/dL) Optimal range: Top half
Total T3 (total triiodothyronine) Range 80 to 200 ng/dL Optimal range: Top half OK, very top quarter best
Free T3 (free triiodothyronine) Range 2.6 to 6.0 pmol/L (80-200 ng/dL or 2.3 to 4.2 pg/mL) Optimal range: Top half OK, very top quarter best
THBR (Thyroid hormone binding ratio) Range 0.9-1.1

A low TSH indicates hyperthyroidism.
If T3 and T4 shows below the minimum, hypothyroidism may be indicated.
If T3 and T4 is high, hyperthyroidism (over-active thyroid) may be indicated.
Hyperthyroidism is a common cause of gynecomastia in men because it increases the estrogen to testosterone ratio.

Copper Testing

Humans have efficient mechanisms to regulate copper stores, normally protecting from excess dietary copper levels.
Copper tests can help to diagnose some diseases such as Wilson’s disease or Menkes disease.
We should monitor total copper, free serum copper, 24-hour urine copper, and liver biopsy copper concentrations.
Some symptoms of excess copper are similar to those of a copper deficit, often making diagnosis difficult.
Serum ceruloplasmin is used to determine free serum copper.
Note that some infections or inflammation may temporarily increase copper levels.
Also, supplementation of zinc and/or magnesium will complete with copper for absorption, leading to a copper deficiency.

Copper reference ranges:
Free serum copper: 1.6-2.4 μmol/L (10-15μg/dL)
Total copper: 10-22 μmol/L (63.7-140.12 μg/dL)
Serum ceruloplasmin: 2.83-5.50 μmol/L (18-35 μg/dL)
24-hour urine copper 0.3-0.8 μmol (20-50 μg)
Liver copper 0.3-0.8 μmol/g of tissue (20-50 μg/g of tissue)

Normal copper values indicate normal dietary intake, physiology, absorption and excretion of copper.
Food sources of copper:
Many foods including seeds, organ meats, nuts, seafood, liver.
Copper is also found in the water supply.
Average daily copper intake in men: 1.54-1.70 mg/day, in women 1.13-1.18 mg/day.
The wide food sources make copper deficiency fairly rare.
Copper deficiency may be from:

  • Dietary insufficiency of copper (rare)
  • Malabsorption in the duodenum where most copper is absorbed.
  • Nephrotic syndrome
  • Those with Menkes disease (low serum copper, low serum ceruloplasmin, low liver biopsy levels)
  • Overcorrection of treatment for Wilson disease

High total copper may be from:

  • Ingesting too much copper
  • Eating acidic foods cooked in uncoated copper cookware
  • Poor excretion secondary to underdeveloped biliary systems, more common in infants
  • In Wilson’s disease, liver biopsy shows high levels of copper, the criterion for diagnosis
  • Elevated urinary copper (24-hour urine study) can also indicate Wilson disease
  • But low serum ceruloplasmin and serum copper are common in Wilson’s disease

Symptoms of copper deficiency include:

  • Fatigue and weakness
  • Frequent illness
  • Weak and brittle bones
  • Memory, learning and walking difficulty
  • Cold sensitivity
  • Pale skin
  • Premature grey hair
  • Low haemoglobin count
  • Too much Zinc and Magnesium supplements which fight Copper for the same cell receptors

Symptoms of excess copper include:

  • Mood swings, irritability, depression, fatigue
  • Excitation, difficulty focusing, feeling out of control
  • Vomiting, Hematemesis (vomiting of blood)
  • Hypotension (low blood pressure)
  • Melena (black “tarry” faeces)
  • Coma
  • Jaundice (yellowish pigmentation of the skin and/or whites of eyes)
  • Gastrointestinal distress
  • Those with glucose-6-phosphate deficiency may have greater risk of hematologic effects of copper
  • Hemolytic anemia from burn treatment with copper compounds (rare)

Chronic (long-term) copper exposure may damage the liver and kidneys.

Gene Testing

Testing for the BRCA1 and BRAC2 gene for Breast Cancer Risk

Angelina Jolie had a double masectomy as a result of a positive BRCA1 test, which is not the right thing to do.
Some Doctors claim that a positive result means a 95% chance of developing breast cancer.
In fact, the true figures are more like 80% increased risk, but the risk of breast cancer can be REDUCED by 80% or more in most women by:
– A healthy diet free of toxins, chemicals, processed foods, eating organic foods wherever possible.
– Elimination of sugar, especially fructose in the diet, including sugar hidden in processed foods.
– A teaspoon of Turmeric every day, preferably as a tea in a mug of hot water, with freshly ground black pepper (containing Bioperine) to substantially increase the release of cancer-fighting curcuminoids.
– Or alternatively, a Curcumin capsules, the active ingredient in turmeric).
– Adequate supplements of Vitamin D3,
Selenium and
Lycopene.
– Building the immune system by exercise and keeping off excess weight.
In other words, anyone with the BRCA1 gene can reduce their cancer risk to that of a normal person, and considerably less risk if the above recommendations are carried out from an early age and strictly adhered to.
If you still want the test, fine, but LeanMachine maintains that the above recommendations can help prevent ALL types of cancer, as well as maintaining a healthy heart, and preventing “modern” diseases like Alzheimer’s, MS, Parkinsons, Diabetes, etc.
Still want a double masectomy?
Remember that as soon as the surgeon starts cutting, any existing cancer cells will go into the bloodstream and circulate through every organ in the body.
Also we have the usual risks for any surgery – anaesthetics, infection, wrong drugs, side effects, incorrect dosage given, etc.

Testing Alzheimer’s gene

Yes, tests can now show if we have a high risk of Alzheimer’s Disease.
I did consider this myself. I watched my father slowly wither away and die from Alzheimer’s disease, deeply affecting my mother, friends, family and myself.
However, I declined to have the test because regardless of the outcome, the same diet I recommend for cancer and cardiovascular disease is also effective for reducing risk of Alzheimer’s.
The only extra thing to add is two to four tablespoons of Coconut Oil every day, because Alzheimer’s is often known as “Diabetes of the Brain” when glucose sometimes cannot get into the brain because the brain becomes “insulin resistant”.
The brain uses more glucose than the rest of the body, however, we can feed the brain with coconut oil effectively as it feeds the brain via a different pathway,
delaying or even eliminating the onset of Alzheimer’s.
Most Alzheimer’s patients will improve their symptoms on coconut oil. Countries with the most Junk food, e.g. the USA have an Alzheimers death rate of 24.8 per 100,000 while Phillipines, Malaysia, Maldives and other tropical countries where coconut oil is an important part of the diet, rates are around 0.2 per 100,000.
Of course, Alzheimers deaths are very much under-reported, as the patient normally dies from pneumonia or organ failure, which is often the cause reported on the death certificate.
Turmeric is also important as the active ingredient
Curcumin helps to dissolve amyloid plaques which are present in Alzheimer’s patients.
Drug companies have tried for years to get rid of amyloid plaques, but the have made no difference to Alzheimer’s, because the plaques are the body’s way of protecting neurons for damage caused by high blood glocose, high insulin, toxic metals like mercury, aluminium from vaccinations, food and the environment.
Wise old men are sometimes referred to as a “Sage” and the reason is simple – eating sage leaves every day can help halt Alzheimer’s.

Immunology

The range of tests below can help determine the risk or check the progress of treatment of many infections and autoimmune diseases.
Diagnosis can be complex, and should always be under the guidance on an Immunologist who specialises in this area.
Some tests also relate to allergies and these should be under the guidance of an Allergist.

RH – Rheumatoid Factor

Normal range is less than 14 IU/ml, the lower the better.
Results over 14 can indicate Rheumatoid Arthritis, or some other auto-inmmune disease, where
For further diagnosis of Rheumatoid Arthritis, the doctor may order a CCP (Cyclic Citrullinated Peptide Antibody) test.
Other tests may include a Synovial Fluid Analysis, where synovial fluid (which lubricates the joints) is drawn from the space between joints by a needle (not a blood test).

CCP (Cyclic Citrullinated Peptide Antibody)

This test helps diagnose Rheumatoid Arthritis, often confirming a diagnosis months before symptoms appear.

Immunoglobulins A, G and M

These are three tests associated with the immune system.
Immunoglobulins are protein molecules that contain antibody activity. They are produced by terminal cells of B-cell differentiation known as “plasma cells”.
There are five immunoglobulin (Ig) classes: IgG, IgM, IgA, IgD and IgE.
In normal serum, approximately 80% is IgG, 15% is IgA, 5% is IgM, 0.2% is IgD and a trace is IgE. IgD and IgE are not tested as often.
Total immunoglobulin levels are normally considered the total of the three most common: IgG + IgM + IgA, ignoring IgD and IgE.

IgG – Immunoglobulin G

Normal serum range (adults) varying between labs, is 62 to 140 g/L (620 to 1400 mg/dL in USA, some labs say 767 to 1,590 mg/dL).
Babies (Newborn to 5 months) is 10 to 33 g/L (100 to 334 mg/dL in USA), increasing with age to level out at adulthood (18 years +).
IgG is a major antibody type in blood, and can enter tissues and fight infection.
IgG has 4 forms, all providing most antibody-based immunity against invading pathogens.
IgG is also the only antibody that can cross the placenta to provide passive immunity to the fetus.
– High IgG – may indicate a chronic infection such as AIDS.
High IgG is found in IgG MGUS, IgG multiple myeloma, chronic hepatitis, and MS (multiple sclerosis).
With multiple myeloma (cancer of plasma cells in bone marrow), tumour cells make only the monoclonal type of IgG antibody (IgM), and reduced levels of IgG and IgA are found.
Other conditions make polyclonal IgG antibodies.
Electrophoresis is required (a lab technique) to separate macromolecules based on size. A negative charge is applied causing proteins to move towards a positive charge.
Used for both DNA and RNA analysis, and to differentiate the monoclonal from the polyclonal cells.
– Low IgG – can be found in patients with congenital deficiencies.
Low IgG occurs in Waldenstrom’s macroglobulinemia, where high IgM antibodies inhibit growth of B-cells that make IgG.
Low IgG can also indicate some types of leukemia and nephrotic syndrome (kidney damage).
Rarely, some people are born with insufficient IgG antibodies, and have a greater risk of infections.
Low IgG levels in adolescents or adults are classified as:

  • Mild to moderate 30 to 60 g/L (300 to 600 mg/dL)
  • Significant 10 to 29.9 g/L (100 to 299 mg/dL)
  • Profoundly reduced – under 10 g/L (under 100 mg/dL)

Adolescents and adults should have a total immunoglobulin (IgG + IgM + IgA) level greater than 60 g/L (600 mg/dL),
with confirmed normal antibody responses, to exclude humoral deficiency.
Total immunoglobulin levels of 40 to 60 g/L (400 to 600 mg/dL) or IgG levels of 20 to 40 g/L (200 to 400 mg/dL) may contain adequate amounts of antibody,
but this is unlikely if total immunoglobulin levels are under 40 g/L (400 mg/dL) or serum IgG levels are under 20 g/L (200 mg/dL).
A specialist should decide if a patient should start immunoglobulin replacement therapy, based on clinical history, physical findings, laboratory variables,
serum immunoglobulin levels, history of infections, concomitant diseases, antibody response to proteins and vaccines, radiographic studies, and pulmonary function tests.
Patients with profoundly or significantly reduced IgG levels and impaired antibody response are usually treated with replacement immunoglobulin
starting at 100 mg per kg of body weight per week, given either intravenously or subcutaneously.
Prophylactic antibiotics may also be needed in some patients.
Dosage and frequency is aimed to maintain serum IgG level greater than 60 g/L (600 mg/dL), and over 80 g/L (800 mg/dL) has potential to improve pulmonary outcome.
Serum IgG levels should be checked four to six month intervals to ensure that adequate trough levels are maintained.
Patients with mild-moderate reductions in IgG levels 30 to 60 g/L (300 to 600 mg/dL) and normal antibody responses generally do not require immunoglobulin replacement therapy,
but should be carefully monitored by a knowledgeable specialist.

IgA – Immunoglobulin A

Normal serum range (adults) is 8 to 35 g/L (80 to 350 mg/dL in USA, some labs say 61 – 356 mg/dL).
Babies 0 to 5 months: 0.7 to 3.7 g/L (7 to 37 mg/dL in USA), quickly increasing to age 2 to 4 years, then gradually increasing to stable adulthood (18+)
Sometimes a lumbar puncture is performed to test for IgA in Cerebrospinal Fluid (the fluid that bathes the brain and spinal cord) but this is uncommon as it has a higher risk.
Protects from infections of mucous membranes, typically in the lining of the mouth, airways, digestive tract, urogenital tract, preventing bacteria colonization.
Also found in fluids such as saliva, tears, and breast milk – see Secretory IgA below.
– High IgA – may indicate MGUS (IgA Monoclonal Gammopathy of Unknown Significance) or IgA multiple myeloma (cancer of plasma cells in bone marrow).
IgA may be higher in some autoimmune diseases, e.g. RA (rheumatoid arthritis) and SLE (Systemic Lupus Erythematosus), and in cirrhosis, chronic hepatitis and other liver disease.
– Low IgA – may indicate some types of leukemia, nephrotic syndrome (kidney damage), intestinal problems (enteropathy), and ataxia-telangiectasia (rare inherited disease
affecting muscle coordination). Increases risk of autoimmune disease, and risk of severe reactions to receiving blood products.

SIgA – Secretory IgA (Subclass of IgA)

Normal Range (saliva): 118 to 641 mg/L (118 – 641 µg/mL in USA)
Optimum Range (saliva): 130 to 471 mg/L (130 – 471 µg/mL in USA)
Normal range (fecal): 5.1 to 20.4 g/L (51 – 204 mg/dL in USA) (Genova Lab range).
​Secretory Immunoglobulin A (SIgA) is a subclass of Immunoglobulin A (IgA), tested in saliva or feces,
although also found in mucous secretions of tear glands, mammary glands, respiratory system, genito-urinary tract, and the gastrointestinal tract.
SIgA is not synthesized by mucosal epithelial cells or derived from blood but is produced by B-lymphocytes adjacent to the mucosal cells, then transported through the cell interiors, and released into the secretions from the cells.
SIgA protects the oral cavity, lungs, gut and other mucosal areas from invading pathogens.
SIgA has highest levels in the morning and lowest levels in the evening, but is dependant on flow rate.
IgA levels in saliva are affected by Concentrations normally decrease as flow rates increase, so flow rate is measured to express SIgA secretion as a function of time.
To maintain healthy SIgA levels, increase intake of Choline, EFA’s, glutathione, glycine, phosphatidylcholine, Vitamin C and zinc, all essential for SIgA production.

Anti tTg IgA, tTG Antibodies IgA, Tissue Transglutaminase (tTG), Tissue Transglutaminase Antibodies IgA

Serum test, a subclass of IgA, for monitoring adherence to gluten-free diet in patients with dermatitis herpetiformis (cutaneous manifestation of Coeliac disease) and celiac disease.
Reference Range:
Less than 4.0 U/mL (negative)
4.0 to 10.0 U/mL (weak positive)
Greater than 10.0 U/mL (positive)
These tests are not sensitive to age.
Usually tested along with IgG to help evaluate certain autoimmune conditions, commonly celiac disease.
If testing for celiac disease, the patient must eat gluten-containing foods up to 7 days before the test, otherwise no antibodies may be evident in the test result.
In celiac disease, the body produces IgA and IgG that attack tTG: immunoglobulin A (IgA) and immunoglobulin G (IgG).
Measuring the IgA form of tTG antibody in the blood is more useful in detecting celiac disease as tTG is made in the small intestine, where gluten causes inflammation and irritation in sensitive people.

IgM – Immunoglobulin M

Normal serum range (adults) is 0.45 to 2.5 g/L (45 to 250 mg/dL in USA).
Some labs say 0.37 to 2.86 g/L (37 to 286 g/dL).
Babies 0 to 5 months: 0.26 to 1.22 g/L (26 to 122 mg/dL in USA) gradually increasing to adult range (18+)
Women usually have higher IgM levels than men.
Often discovered by investigation of other conditions.
There are two types: Natural IgM and Immune IgM.
Natural IgM occurs in the body at all times, and Immune IgM responds to invaders in the body.
IgM is a large molecule and in non-specific in it’s attack role, and is the first line of defense to invaders, followed by IgG which is slower to respond,
but has a better targeting role for an individual invader.
Antibody measurements assist diagnosis of conditions, such as infections, immunodeficiency, autoimmune disease, and certain types of cancer.
Insufficient immunoglobulins increases susceptibility to infections. High immunoglobulins may indicate an overactive immune system (auto-immune condition).
Found mostly in blood and lymph fluid, and the first the body makes to fight new infections.
Expressed on the surface of B cells (monomer) and in secreted form (pentamer) with very high avidity (forms multiple binding sites with antigen).
Eliminates pathogens in early stage B-cell mediated (humoral) immunity before there is enough IgG.
– High IgM – may indicate a new infection, IgM MGUS, Waldenstrom’s macroglobulinemia, early viral hepatitis,
mononucleosis, rheumatoid arthritis, nephrotic syndrome (kidney damage), or parasite infection.
– Low IgM – occurs in multiple myeloma, some kinds of leukemia, and some inherited immune diseases.
Causes of Low IgM:

  • Smoking with alcohol consumption
  • Endurance exercise and over-training
  • Rheumatoid arthritis
  • Hashimoto’s thyroiditis
  • Lupus
  • Celiac disease
  • Crohn’s disease
  • Immune thrombocytopenia
  • Diabetes
  • Selective immunoglobulin M deficiency, a rare and sometimes hereditary disorder
  • Wiskott-Aldrich syndrome, a rare immune deficiency disorder
  • Lymphoid nodular hyperplasia
  • Leukemia

Smoking alone or alcohol consumption alone has little effect on IgM, but together they signigicantly reduce IgM.
Some patients have no symptoms, others may develop serious recurring infections.
Supplements shown to increase IgM:

  • Lycopene shown beneficial in human and animal studies, from red foods such as tomatoes and watermelon
  • Ginseng shown beneficial in animal studies
  • Astragalus shown beneficial in animal studies

Causes of High IgM:

  • Viral and/or bacterial infections
  • Some autoimmune disorders, including:
    • Type 1 diabetes
    • Multiple sclerosis
    • Primary biliary cirrhosis
  • Kidney damage, where proteins such as albumin and IgG are lost through urine (nephrotic syndrome), but serum IgM conversely increases
  • Hyper-immunoglobulin M syndromes, genetic immunodeficiency disorders with high IgM and low levels of other immunoglobulins
  • Louis–Bar syndrome (ataxia-telangiectasia), a rare genetic neurodegenerative disease
  • Cancers, such as multiple myeloma and Waldenstrom’s macroglobulinemia (a type of non-Hodgkin’s lymphoma)

Health Effects of High IgM:
1: Metabolic Syndrome, a condition characterized by three or more of: fat around the stomach, high blood pressure, high blood glucose, high triglycerides, and low HDL-C levels.
2: High IgM Levels Increase All-Cause Mortality Risk
To decrease IgM levels, work on resolving underlying health issue with a health care professional.

IgD – Immuglobin D

Normal range (adults) is 0.003 to 0.03 g/L (.3 to 3.0 mg/dL in USA). Some labs say anything less than 10 mg/dL is normal.
Many normal, healthy people have undetectable levels of IgD.
IgD fights bacteria, functioning as an antigen receptor on B cells that have not been exposed to antigens.
Shown to activate basophils and mast cells to produce antimicrobial factors.
– High IgD – can indicate IgD multiple myeloma, not as common as IgA or IgG multiple myeloma.
– Low or absent IgD – does not appear to increase infection risk. Not well-researched, so rarely tested.

IgE – Immuglobin E

Normal range (adults) is only a trace amount, .0002 to .02 g/L (or 200 to 20000 ug/L or 83 to 8333 U/mL) or (.002 to .2 mg/dL in USA).
Binds to allergens, triggers histamine release from basophils and mast cells.
Involved in allergic reactions, and protects from parasitic worms.
Frequently increased in parasitic infestations and atopic inviduals (with allergic hypersensitivity).
– High IgE – may indicate parasitic infection.
Also found in those with allergic reactions, asthma, atopic dermatitis, some cancers or certain autoimmune diseases.
Rarely, high IgE may mean multiple myeloma.
– Low IgE – may indicate ataxia-telangiectasia (rare inherited disease affecting muscle coordination).

Complement Tests

Nine major complement proteins, important for the innate immune system, are numbered C1 to C9.
These nine proteins help the body recognise foreign disease-causing cells. Certain health issues may cause deficiencies in these proteins or vice versa.
The numbering generally represents the order in which they react in a cascade of events (except C4).
There are three separate reaction pathways:
1. The the Classical activation pathway
2. The Alternative activation pathway
3. The Membrane attack pathway
Those with low early complement proteins (C1 to C4) are more prone to infections.
Low complement levels can also be a factor in development of autoimmune diseases.
Those with low late complement proteins (C5 to C9) can have a higher risk of infections caused by Neisseria (a type of bacteria that colonise mucosal surfaces).
Neisseria has two forms in humans, one causing ghonorrhea, the other causing bacterial meningitis which can lead to meningococcal septicaemia.
Some people inherit deficiencies in these proteins, some acquire deficiencies, others have these proteins “used up” by some disease, usually an autoimmune disease.
Normal immunology testing is only for C3 and C4, with other tests required if there appears to be an inherited or aquired deficiency in one or more complement proteins.
Reference range (those older than 16 years):Total hemolytic complement (CH50): 30 to 75 U/mL (41 to 90 hemolytic units).
Total complement (CH50) is used to screen for suspected complement deficiencies before ordering individual C1 to C9 complement tests,
as a deficiency of a single individual component of the complement cascade can result in an undetectable total complement level.
High levels of CH50 combined with high C3 and C4 indicate systemic inflammation, connective-tissue diseases including, but not limited to, SLE (systemic lupus erythematosus),
RA (rheumatoid arthritis), severe bacterial and viral infections, and others like cancer, diabetes mellitus, and myocardial infarction.
Also hypermetabolic states such as hyperthyroidism and pregnancy can be linked to high CH50 levels.
Low results may be a consequence of infectious or autoimmune processes.
Complement component activity varies. Those with rheumatoid arthritis can have high complement serum levels but low complement levels in joint fluid.
Normal C3 levels combined with undetectable C4 levels can indicate congenital C4 deficiency.
Congenital deficiencies of C1, C2 or C4 results in an inability to clear immune complexes.
Undetectable C1q levels combined with zero total complement (CH50) and normal C2, C3, and C4 suggests a congenital C1 deficiency, however inherited C1 deficiency is rare.
Absent (or low) C2 levels in the presence of normal C3 and C4 values are consistent with a C2 deficiency.
Low C2 levels with low C3 and C4 levels can indicate a complement-consumptive process such as infectious or autoimmune disease.
Low C2 and C4 levels with C3 levels may indicate C1-INH (C1 esterase inhibitor) deficiency.
Note: This test is different from C1q binding, which is an assay for circulating immune complexes.

C1, C1Q Complement Level

Reference range: 1.2 to 2.2 g/L (12 to 22 mg/dL USA)
Normally tested when Total Complement (CH50) level is undetectable, to diagnose congenital C1 deficiency.
Also to diagnose acquired deficiency of C1-INH (C1 Esterase Inhibitor).
Complement C1 is composed of 3 subunits: C1q, C1r, and C1s. C1q level indicates the amount of C1 present.
C1q recognises and binds to immunoglobulin complexed to antigen, initiating the complement cascade.
Like the more common C2 deficiency, C1 deficiency is associated with increased risk of immune complex disease such as SLE (systemic lupus erythematosus),
polymyositis, glomerulonephritis, and Henoch-Schonlein purpura.
Low C1 levels have also been reported in patients with abnormal immunoglobulin levels (Bruton’s and common variable hypogammaglobulinemia and severe combined immunodeficiency),
likely due to increased catabolism.

C2 Complement Level

Reference Range: 25 to 47 U/mL.
Normally tested when the patient with a low or absent (undetectable) hemolytic complement (CH50).
If the C2 result is under 15 U/mL, then C3, C4, and C2AG levels will be tested.
C2 deficiency is the most common inherited complement deficiency, although rare.
Homozygous (two of the same allele) C2 deficiency has an approximate prevalence ranging from 1 in 10,000 to 1 in 40,000.
Heterozygotes (specific genotypes with 1 each of different alleles) C2 deficiency has an approximate prevalence ranging from 1 in 50 to 1 in 100).
Around half of the homozygous patients are clinically normal, but in one third,
SLE (systemic lupus erythematosus) or discoid lupus erythematosus occurs.
People with both SLE and a deficient C2 level frequently have a normal anti-ds DNA titer.
Many have lupus-like skin lesions and photosensitivity, but immunofluorescence studies can fail to demonstrate immunoglobulin or complement
along the epidermal-dermal junction.
Diseases associated with deficient C2 level include dermatomyositis, glomerulonephritis, vasculitis, atrophodema, cold urticaria, inflammatory bowel disease
and recurrent infections.
Test results suggesting C2 deficiency include zero or undetectable hemolytic complement (CH50), with normal C3 and C4 values.

C3 Complement Level

Reference range Males: 8.8 to 25.2 g/L (88 to 252 mg/dL USA)
Reference range Females: 8.8 to 20.6 g/L (88 to 206 mg/dL USA)

C4 Complement Level

Reference range Males: 1.2 to 7.2 g/L (12 to 72 mg/dL USA)
Reference range Females: 1.3 to 7.5 g/L (13 to 75 mg/dL USA)
Complement C4 plays an important role in eliminating certain infections.
– High C4 – may indicate cancer or ulcerative colitis.
– Low C4 – may indicate:

  • Autoimmune disorders and collagen vascular diseases, e.g. lupus and rheumatoid arthritis
  • Bacterial infections
  • Hepatitis
  • Malnutrition
  • Rejection of a kidney transplant
  • Systemic lupus erythematosus (autoimmune disease affecting skin, joints, kidneys and other organs
  • Lupus nephritis (kidney disorder as a result of systemic lupus erythematosus
  • Cirrhosis (liver damage)
  • Glomerulonephritis (kidney disease)
  • Hereditary angioedema (rare but serious autoimmune disease, causes swelling in various body parts

C5 to C9 Complement Level

Reference range (C5): 29 to 53 U/ml.
Reference range (C6): 32 to 57 U/ml.
Reference range (C7): 36 to 60 U/ml.
Reference range (C8): 33 to 58 U/ml.
Reference range (C9): 37 to 61 U/ml.
Deficiencies of the late complement proteins (C5, C6, C7, C8, and C9) are unable to form the MAC (lytic membrane attack complex) and have increased susceptibility to neisserial infections.
Absent C5 to C9 levels with normal C3 and C4 levels are consistent with C5 deficiency.
Absent C5 to C9 levels with low C3 and C4 levels suggest complement consumption (Used up by an autoimmune disease).
Normal results indicate normal C5 to C9 levels and normal functional activity, although in rare cases, although C5 to C9 levels seem OK,
the protein can be non-functional, and further tests are required to determine correct function of C5 to C9.
See notes above under the heading Complements.
Additional notes re C7:
Most cases of C7 deficiency have neisserial infections, but rarely cases of SLE (Systemic Lupus Erythematosus), RA (Rheumatoid Arthritis),
scleroderma or pyoderma gangrenosum.
Additional notes re C9:
In the Japanese population, C9 deficiency is common, almost 1%.
Lytic activity of C9-deficient serum is decreased, but assembly of C5b-C8 complexes will result in a transmembrane channel with lytic activity,
although lytic activity is reduced.
Many C9-deficient patients show no symptoms, but may still present with invasive neisserial infections.

ANA – Anti-Nuclear Antibodies Screen

ANA tests identify serum antibodies that bind to autoantigens in cell nuclei.
Most of these antibodies are IgG, with IgM and IgA also sometimes detected.
The ELISA (Enzyme-Linked ImmunoSorbent Assay) method is mostly used.
Normal Range: Less than 1.0 U (or less than or equal to 1:40 dilution) is classed as a negative result.
Positive range:
1.1 to 2.9 U is weakly positive.
3.0 to 5.9 U is positive.
Greater than or equal to 6.0 U is highly positive.
A positive result normally indicates presence of an autoimmune disease where the body attacks connective tissue, and may indicate:

  • Mixed connective tissue disease
  • Drug-induced lupus erythematosus
  • Systemic lupus erythematosus
  • Sjögren syndrome
  • Scleroderma
  • Polymyositis-dermatomyositis
  • Rheumatoid arthritis

Some labs give results as 1:40 (good) while a result of 1:640 suggests an autoimmune condition. This is a measure of how much dilution of the blood specimen is required before the antibodies can no longer be observed.
Other tests will be required to diagnose a specific autoimmune condition.
Note that insufficient Vitamin D3 can cause some autoimmune conditions. Although Vitamin D3 increases immunity, it also moderates an immune system running out of control.

Allergy Testing

If the Eosinophil test (see under Haematology) is high, allergies may be the cause.
There are many allergy tests. Some are serum (blood) tests, and the sample may be tested in vitro exposed to a mixture of various allergens.
Allergens may be pollen, mould, animal fur or saliva, dust mites, birds, and various foods, the common culprits being:

  • Eggs
  • Peanuts
  • Cows Milk
  • Soy
  • Barley
  • Rice
  • Wheat (gluten)
  • Seafoods
  • Nuts
  • Antibiotics

When allergic reactions occur, levels of IgE are tested, and in some cases IgA

Anaphylactic Foods

These are foods which may cause enough swelling around the mouth, tongue and throat that breathing is difficult, and choking may occur.
Peanuts are perhaps the most famous food for causing breathing difficulties.
Usually overlooked by doctors: Lack of vitamin D, lack of sunlight, lack of very small exposure to these foods as a fetus or as a newborn are significant factors in these conditions.

Other Testing

The doctor may order many other types of tests, depending on results of previous tests combined with previous medical history, age, sex, current symptoms, family history, etc.

Sex Hormone Testing

Doctors can order an Androgen Study or Sex Hormone Profile, and may include any or all of the below tests and more:

Estrogens including E2 (estradiol), E1 (estrone), E3 (estriol)

E1 and E2 are the main active estrogens, as E3 is generally the pregnancy estrogen.
The enzyme aromatase converts testosterone to estradiol, and converts androstenedione to estrone.
Many other steroids can stimulate the estrogen receptor independent of aromatase.
This includes xenoestrogens such as BPA (Bisphenol A) and other plastics in the environment and unfortunately in the diet (microwave dinners, etc).
This is why LeanMachine recommends glass containers for all foods. BPA free plastics are just as bad. BPA has been replaced with BPS, and
although BPS is not taken up as much by estrogen receptors, once in the body it is very hard to excrete, so can easily build up to harmful levels.
E2 is mainly produced in ovaries and testes by aromatization of testosterone
High estrogen may come from estrogen secreting tumours, medications, exposure to BPA, pthalates and other toxins in plastics, from obesity (every fat cell can produce estrogens), and many other factors.
High estrogen may be a result of unusually high levels of testosterone, from testosterone replacement therapy or testicular tumour, which converts to estrogen by the enzyme aromatase.
Aromatase inhibitor drugs such as anastrozole (Arimidex), letrozole (Femara) and exemestane have largely replaced the older tamoxifen to help treat breast cancer in post-menopausal women.
Anti-estrogenic foods and supplements include cruciferous vegetables (broccoli, cauliflower brussel sprouts, cabbage), onions, garlic, healthy fats
(coconut oil, extra virgin olive oil, avocados, raw nuts), chrysin (passionflower),
DIM (diindolylmethane),
citrus bioflavonoids (diosmin, hesperidin,
rutin, naringin, tangeretin, diosmetin, narirutin, neohesperidin,
nobiletin, quercetin),
turmeric,
Curcumin,
fermented foods (sauerkraut, kimchi, fermented soy, fermented raw dairy, apple cider vinegar, kombucha).

Progesterone

I will omit the reference range here, as there are too many variables.
Progesterone levels are influenced by the time through the monthly cycle, age, pregnancy status, menstruating or post-menopusal, whether uterus and/or ovaries have been removed, if there are cysts on the ovaries, problems with the adrenal glands, and many other factors.
The test can help determine the cause of infertility, track ovulation, assist diagnosis of an ectopic or failing pregnancy, monitor pregnancy health, monitor progesterone replacement therapy, or assist diagnosis of abnormal uterine bleeding.
Men also have small amounts of progesterone.
If supplementation is recommended, see a doctor who can prescribe natural progesterone from a compounding chemist.
Most doctors will simply prescribe Progestin, an artificial and incomplete copy of real progesterone, with side effects perhaps worse than any benefit.
Women pregnant with twins, triplets, etc will usually have higher progesterone than those with a single fetus.
High progesterone levels can be seen sometimes with:

  • Some types of ovarian cysts
  • Non-viable pregnancies (molar pregnancies)
  • A rare type of ovarian cancer
  • Adrenal overproduction of progesterone
  • Adrenal cancer
  • CAM (Congenital Adrenal Hyperplasia)

Low progesterone levels can be associated with:

  • Toxemia late in pregnancy
  • Poor function of ovaries
  • Amenorrhea (Lack of menstruation)
  • Ectopic pregnancy
  • Fetal death or miscarriage

Testosterone

Required by men and women. Women have much less testosterone, but are more sensitive to it. Most testosterone is bound to SHBG (Sex Hormone Binding Globulin) which makes the molecule so large, it can no longer have any effect. Free Testosterone (not bound to SHBG) is the only effective testosterone.
Many labs will only measure total testosterone, and calculate free testosterone by measuring SHBG.
There are many causes of low testosterone, including disease, obesity, stress, insomnia and medications.
If blood tests show low testosterone and high LH, it may indicate a testicular problem in men, such as testicular failure or Klinefelter’s syndrome.
If blood tests show low testosterone and normal or low LH, it may indicate a problem with the pituitary gland.

SHBG (Sex Hormone Binding Globulin)

Attaches to other hormones to regulate their effectiveness when the body produces more hormones than we require.
This is a natural part of the self-regulation body system to prevent skyrocketing or insufficient hormones.

LH (Luteinizing Hormone)

Luteinizing hormone (LH), also called lutropin or lutrophin, British spelling luteinising hormone.
An acute rise of LH (“LH surge”) in women triggers ovulation and development of the corpus luteum (a hormone-secreting structure developed in an ovary after an ovum (egg) has been discharged, but degenerates after a few days unless pregnancy has begun.
LH is secreted by the gonadotropic cells in the anterior pituitary gland in the brain.
This signals the testes (in men) or the adrenals (in women) to produce testosterone.

DHEA

Often called the “Mother of all hormones” as levels can be a thousand times higher than other hormones.
DHEA is mainly made by the adrenal glands, and used to make testosterone and many other hormones.
Unusually high levels of DHEA can be caused by adrenal cancer or hyperplasia, and are aromatised into estrogen or other hormones.

Cortisol

Commonly called the “stress hormone”, or the “fight or flight hormone”.
We all need some cortisol, but long-term high cortisol, usually caused by chronic stress, is very bad for the body.
Cortisol levels vary considerably through the day, so testing is usually carried out at multiple intervals through the day.

Prolactin

Prolactin is a peptide hormone produced by the anterior pituitary gland in the brain.
Primarily associated with lactation, and vital in breast development during pregnancy and lactation.
Doctors test for prolactin in women with galactorrhea (unexplained milk secretion) or irregular menses or infertility, and in men with impaired sexual function and milk secretion.
If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion.
Prolactin is downregulated by dopamine and is upregulated by estrogen.
Hyperprolactinaemia (abnormally high serum prolactin levels) may cause galactorrhea (production and spontaneous flow of breast milk)
and disruptions in the normal menstrual period in women, and hypogonadism, infertility and erectile dysfunction in men.
High levels of prolactin (sometimes due to a prolactin secreting tumour) inhibits the release of gonadotropin releasing hormone,
resulting in reduced LH (Luteinizing hormone, a gonadotropin) secretion, leading to reduced testosterone production.
Normal prolactin levels:
Women: Less than 500 mIU/L (20 ng/mL or µg/L)
Men: Less than 450 mI U/L (18 ng/mL or µg/L)

Beta-HCG

Also known as β-HCG, Human chorionic gonadotropin (HCG), quantitative blood pregnancy test, quantitative hCG blood test, quantitative serial beta-hCG test.
This Serum Quantitative test is the sum of human Chorionic Gonadotropin (hCG) plus the hCG beta-subunit, for early detection of pregnancy.
hCG consists of alpha (α) and beta (β) chains associated to the intact hormone.
The α-chains in all four of these glycoprotein hormones are virtually identical, while β-chains have greatly differing structures,
responsible for the respective specific hormonal functions.
Reference values change during pregnancy, and can double every 2 to 3 days.
Generally a level below 5 indicates no pregnancy, while a level over 25 confirms a pregnancy.
Results between 6 and 24 are a grey area, best re-tested later, or confirmed by ultrasound after 5 to 6 weeks from gestation.
Note: This is a much more accurate and useful test than hGC Urine tests available over the counter.

Range (mIU/mL)
Weeks of pregnancy is defined as completed weeks beginning with the start of the last menstruation phase.
Male 0−3
Female
nonpregnant 0−5
postmenopausal 0−8
pregnant
Weeks Gestation
3 6−71
4 10−750
5 217−7138
6 158−31,795
7 3697−163,563
8 32,065−149,571
9 63,803−151,410
10 46,509−186,977
12 27,832−210,612
14 13,950−62,530
15 12,039−70,971
16 9040−56,451
17 8175−55,868
18 8099−58,176

Levels are high if there is a testicular tumour in men, or pregnancy in women. Often used as a pregnancy test.

MSH (Melanocyte-Stimulating Hormone) Blood Test

MSH is an anti-inflammatory, regulatory hormone made in the hypothalamus, controlling hormone production, modulating the immune system and controlling nerve function.
Also caled: Alpha-Melanocyte-stimulating Hormone, α-MSH.
It is made when leptin is able to activate its receptor in the POMC (Proopio-MelanoCortin) pathway.
If the receptor is damaged by peripheral immune effects, such as the release of too many pro-inflammatory cytokines, then the receptor doesn’t work right and MSH isn’t made.
Leptin controls storage of fatty acids as fat, so MSH and leptin are a major source of interest for obesity control.
MSH controls hypothalamic production of melatonin and endorphins. Without MSH, deficiency creates chronic non-restful sleep and chronic increased perception of pain, respectively.
MSH deficiency causes chronic fatigue and chronic pain. MSH also controls many protective effects in the skin, gut and mucus membranes of the nose and lung.
MSH also controls the peripheral release of cytokines. When there is insufficient MSH, peripheral inflammatory effects are multiplied.
MSH also controls pituitary function, with 60% of MSH deficient patients not having enough antidiuretic hormone, causing patients to be constantly thirsty,
urinate frequently and often have unusual sensitivity to static electrical shocks.
40% of MSH deficient patients will not regulate male hormone production, and another 40% will not regulate proper control of ACTH (AdrenoCorticoTropic Hormone) and cortisol.

ACTH (AdrenoCorticoTropic Hormone)

Normal range: 9 to 52 pg/mL or 10 to 60 pg/mL depending on the lab.
Always tested early morning, as ACTH is highest 6 to 8 am and lowest around 11 pm. No ranges are specified for later in the day.
Normally tested in conjunction with a Cortisol test.
ACTH is a hormone produced in the anterior (front) pituitary gland in the brain, and regulates levels of cortisol (the steroid hormone),
which is released from the adrenal glands
Also known as:

  • Highly-sensitive ACTH
  • Corticotropin
  • Cosyntropin (drug form of ACTH)

Used to detect diseases associated with too much or too little cortisol, possibly caused by:

  • Adrenal or pituitary malfunction
  • Pituitary tumour
  • Adrenal tumour
  • Lung tumour

General

Some of the hormone tests above are blood tests, some are urine tests, some are saliva tests.
I have chosen not to discuss these tests in detail here, as it would fill an encyclopaedia.
These tests vary enormously with age, sex, pre or post menopause, time of the month for women, and so many other factors.
Doctors specialising in this field are best, as typical GP’s often do not have a great understanding of this complex problem.

Other general health tests

Body Mass Index (BMI)

BMI = weight (kg) divided by (height in metres squared).
Note: BMI does not allow for the amount of muscle compared to body fat, so a professional weight-lifter may have a BMI in the obese range, but still have a healthy body composition (more muscle than fat).

Underweight < 18.5 kg/m2
Normal 18.5 – 24.9 Caucasian
Overweight 25.0 – 29.9
Obesity class I 30.0 – 34.9
Obesity class II 35.0 – 39.9
Obesity class III (extreme, morbid) ≥ 40.0

 

Blood Pressure (Systolic / Diastolic)

At doctor’s office (average 5 measurements with lowest and highest readings discarded) < 140 / 90 mmHg
Ambulatory BP monitor < 130 / 85
With diabetes or stroke or cardiac risk < 130 / 80

Heart Rate (HR) or Pulse

Bradycardia < 60 beats per minute
Normal 60 – 80
Tachycardia > 100

Respiration Rate (RR)

Bradypnea < 12 breaths per minute
Normal (eupnea) 12 – 18
Tachypnea > 18

Body Temperature

Fever > 37.5 ° C
Normal 36.5 – 37.5 ° C (approximate)
Hypothermia < 35.0 ° C

Five Blood Tests for Everyone Over 50

Hepatitis C

Hepatitis C probably kills more people than any other virus, and 2014 data from the CDC in the USA shows hepatitis C–related deaths are at an all-time high.
Because this liver disease usually shows little or no symptoms, around half of those infected do not know they carry the virus.
Left untreated, Hepatitis C can lead to cirrhosis, liver cancer, and liver failure, all contributing to about 20,000 deaths in the USA alone.
A simple blood test can diagnose Hepatitis C, and if the test is positive, Hepatitis C is effectively treated before the liver damage becomes life-threatening.
For those born between 1945 and 1965, the USPSTF (U.S. Preventive Services Task Force) recommends a single hepatitis C test.
For those born before 1945 or after 1965, USPSTF reccomend testing only for high risk people, such as those
who had blood transfusions before 1992, injection drug users, or health care workers who have been stuck with a patient’s needle.

Blood glucose

For those overweight, or have have high blood pressure, or a family history of diabetes, there is a high risk for diabetes.
If blood glucose tests normal repeatedly, then once a year is often enough to repeat the test.
If pre-diabetes is diagnosed, immediate action is required to prevent the condition turning into full-blown diabetes.
The best way to prevent full-blown diabetes is to eliminate sugar, carbohydrates and processed foods from the diet.

Lipid panel

The lipid panel tests for LDL and HDL cholesterol and triglycerides.
See notes above.

STI (Sexually Transmitted Infections)

The doctor may ask if any sexual activity has changed (you or your partner).
Although STI’s are unusual among older adults, they are increasing.
Get tested if there are any doubts, as most STI’s can be easily treated and cleared up quickly.

Cancer Tests

Many tests are available, For example, abnormal levels of liver enzymes may indicate liver tumours before any symptoms are evident, allowing early surgery intervention, reducing other dangerous treatments and improving chance of recovery.

CA 15-3 (Cancer Antigen 15-3

This test is used mainly to monitor the treatment for metastatic (spreading) breast cancer.
CA 15-3 is a protein shed by tumour cells, often increased in breast cancer, indicating how the cancer has progressed or how the treatment has reduced the cancer.
CA 15-3 can be elevated in healthy people and in those with other cancers, so is not accurate enough to screen for early breast cancer.
Negative results do not mean there is no cancer, and positive results do not mean there is cancer.
CA 15-3 may be elevated by some other cancers, or by other non-cancerous conditions.
Related tests are Tumour markers, CEA, HER-2/neu, hormone receptor status.

<h3>HER-2, also called HER2/neu, is the acronym for Human Epidermal growth factor Receptor 2</h3>

Tests for HER-2:

FISH (Fluorescence In Situ Hybridization) test uses fluorescent probes, looking at the number of HER2 gene copies in a tumor cell.
More than two copies of the HER2 gene indicatesthat the cancer is HER2 positive.​

IHC (ImmunoHistoChemistry) test measures tumour production of the HER2 protein, ranked as 0, 1+, 2+, or 3+.
If results are 3+ the cancer is HER2-positive.
If the results are 2+, a FISH test determines if the cancer is HER2-positive.
If the HER 2 test is positive, it indicates that cancer can be treated with Herceptin (trastuzumab, an immune treatment), also Perjeta and Kadcyla.
A HER2 positive result also means that the cancer is most likely aggressive, so it is advised to start treatment as soon as possible to improve  survival and help prevent recurrence.

CA 19-9 (Cancer Antigen 19-9)

High CA 19-9 levels are usually caused by pancreatic cancer, but also by other cancers and by infections in the liver, gallbladder, and pancreas.
Related tests: Bilirubin, CEA, liver function tests, tumour markers

CA-125, also known as Cancer antigen 125

CA-125 is a protein produced by ovarian cancer cells, but also in some healthy women, and used as a marker for ovarian cancer.
CA-125 levels may be high in non-cancerous conditions such as pelvic inflammatory disease, excessive abdomen fluid (ascites), liver disease, pregnancy and menstruation.
Related tests: Tumour markers, BRCA-1 and BRCA-2

BRCA-1 and BRCA-2

See info above under the Gene Testing heading.

Calcitonin, also called Thyrocalcitonin

The Calcitonin test helps diagnose and/or monitor:

  • C-cell hyperplasia, a benign condition that may or may not progress to MTC
  • MTC (Medullary thyroid cancer), a malignant condition
  • Screen risk for MEN2 (multiple endocrine neoplasia type 2)

Age, pregnancy, lactation and food can influence calcitonin concentration in healthy people.
Reference ranges for some calcitonin chemiluminescent assays:
Males: Less than 8.8 pg/mL (ng/L)
Females: Less than 5.8 pg/mL (ng/L)
Athyroidal (without a functioning thyroid gland) people: Less than 0.5 pg/ml (ng/L)
Calcium Infusion test raises calcitonin levels.
Peak calcium infusion (IMMULITE 2000 calcitonin assay) test:
Males: Less than or equal to 130 pg/mL
Females: Less than or equal to 90 pg/mL
Normal range for peak calcitonin following calcium infusion is 100 to 200 ng/L
Specific reference intervals have not been established, so must be interpreted by the doctor along with other tests.
A high level of calcitonin should lead the doctor to perform a thyroid biopsy, scan and ultrasound to confirm the diagnosis.
About 25% of MTC cases relate to an inherited mutation in the RET gene, leading to MEN2.
Only 1 copy from either parent increases risk of MTC, occurring mostly in the 40 to 60 age group, but can occur at any age, more prevalent in women.

AFP (alpha-fetoprotein)

There are different AFP tests for different reasons, performed on a blood sample, urine sample, or amniotic fluid sample.
Other names for the test: Total AFP, MSAFP (Maternal Serum AFP), and Alpha-Fetoprotein-L3 percent (%)
Tested between the 14th and 22nd week of pregnancy as a screen for neural tube defects and chromosomal abnormalities.
Elevated AFP in maternal serum or amniotic fluid during pregnancy may indicate:

  • Spina Bifida
  • Anencephalia
  • Atresia of the oesophagus
  • Multiple pregnancy

Down Syndrome markers:

Amniotic Fluid AFP (alpha-fetoprotein)

Maternal AFP (Alpha-Fetoprotein Test) levels, together with Beta-HCG, gestational age, maternal weight and other parameters, risk of Trisomy 21 (Down Syndrome) is calculated.
In Trosomy 21, maternal serum AFP concentration is decreased, while maternal serum Beta-HCG is about double the normal level, and Pregnancy-Associated Plasma Protein A (PAPP-A) is reduced.
If a woman was screened for Down’s syndrome or open neural tube defects in a previous pregnancy, the levels of the screening markers in that pregnancy can be used to adjust the marker levels in the current pregnancy.
Women with a false positive in one pregnancy is likely to have a false positive again in a subsequent pregnancy.
Twin / Down Syndrome markers:
Serum marker levels are raised in twin pregnancies, so twin pregnancies pose problems as one fetus may be affected and the other may not.
About 2% of pregnancies affected by Down’s syndrome are twins. If the twins are dizygotic (Fraternal, non-identical), the risk of Down’s syndrome for each baby individually is the same as for a single baby (around 1 in 800 pregnancies).
If the twins are monozygotic (identical), the risk to both of having Down’s syndrome is also around 1 in 800.
A combination of Nuchal Translucency scanning and Serum screening may aid in risk assessment of Down’s syndrome for twin pregnancies.
FNT (Fetal Nuchal Translucency) screening uses ultrasound to measure size of the nuchal pad at the nape of the fetal neck, performed between 11 weeks + 2 days and 14 weeks + 1 day.
Increased nuchal translucency reflects fetal heart failure, typically seen in any serious anomaly of the heart and great arteries, and strongly associated with a chromosomal abnormality. In one study, 84% of karyotypically proven trisomy (where the fetus has 47 chromosomes instead of 46), 21 fetuses had a nuchal translucency >3 mm at 10-13 weeks of gestation (as did 4.5% of chromosomally normal fetuses).
The greater the extent of FNT, the greater the risk of abnormality.
FNT is a straightforward test but will have a 20% false positive rate (FPR) if the thresholds are set to detect 85% (if used alone and maternal age adjusted).
Adding nasal bone screening during the same examination may increase sensitivity further and reduce the FPR.
One study concluded that an absent nasal bone should be considered as a highly predictive marker of Down’s syndrome.
Afro-Caribbean women have different marker levels than Caucasian women, heavier women have different markers than lighter women, and those who smoke have different markers again.
Conclusion: These markers only pose a risk level, and do not guarantee a result one way or the other.

AFP also tests for cancer.
AFP can be present at very low levels in non-pregnant people, and the test may indicate other problems.
The Quantitative test, reporting the concentration of AFP in the sample, is the normal AFP test, but a less expensive Qualitative test may be used sometimes, reporting only a normal or high concentration.
AFP is made by the liver and yolk sac of a fetus, and is the main protein in the first three months of development,
but decreases by age 1 to the very low levels found in adults.
However, AFP is a tumour marker for hepatocellular carcinoma (liver cancer), germ cell tumours (testicular and ovarian cancers), also the rare nonseminomatous germ cell tumors usually found in the pineal gland of the brain.
AFP can also be elevated in some forms of biliary tract, stomach or pancreas cancers.
AFP may also elevated in Cirrhosis or chronic active hepatitis.

AFP Reference range:
Non-pregnant adults, high blood levels, over 500 ng/ml (nanograms/milliliter) of AFP are seen in only a few situations, such as:

  • Hepatocellular carcinoma (HCC), a primary cancer of the liver
  • Germ cell tumors (a type of cancer of the testes and ovaries, such as embryonal carcinoma and yolk sac tumors)
  • Ataxia Telangiectasia, a severely disabling and rare genetic neurodegenerative disease

Moderately elevated values are found in:

  • Alcohol-mediated liver cirrhosis
  • Acute viral hepatitis
  • Carriers of HBsAg (surface antigen of the hepatitis B virus), indicating current hepatitis B infection

Pregnancy Tests

See also AFP test above.

pregnancy-associated plasma protein A (PAPP-A)

To be advised…

Rare Tests

Protein C and Protein S

Other names for these tests:
– Protein C Antigen and/or Functional Blood Test
– Protein C, Functional or Antigen Test
– Protein S, Functional or Antigen Test
Protein C and Protein S are separate blood tests, often performed together. The tests are meant to assess either the functioning or the abundance of these proteins.
Protein C is an anticoagulant and anti-inflammatory enzyme. It requires both Protein S, a coenzyme, and Vitamin K to function.
It is similar to aspirin in its “blood-thinning” effects.
Protein C is made in the liver, while Protein S made in the inner (endotheliel) lining of blood vessels.
Both proteins circulate in the bloodstream.
Blood clotting is essential to minimise blood loss if injured, but it is regulated, because if the bood is too thin, we can bleed out and die,
but if blood is too thick, it can form clots when we do not need them, and restrict or block off blood supply, potentially causing loss of a limb or organ, and sometimes life.
About 1 in 300 people have protein C deficiency, which is classed as a hereditaty condition, although more people aquire it from taking Warfarin.
Most people with this deficiency have few problems with clotting, as long as diet and lifestyle factors are kept in a healthy manner, and any sudden clotting is attended to promptly.
If two people, both with Protein C deficiency, have offspring, then that child is more likely to have a very severe case of clotting.
Protein C is activated during the clotting process, to prevent too much clotting, by removing blood clotting factors,
and stimulating plasmin, a protein that degrades blood clots (fibrinolysis).
Deficiencies in these proteins can cause hypercoagulable blood (abnormal blood coagulation) and internal blood clotting (thrombosis).
There are several classifications, characterized by Protein C and S deficiencies:
– Type I is caused by insufficient quantity.
– Type II is caused by defective function.
– Type III (Protein S only) is caused by a low amount of active-form Protein S, but normal levels of total Protein S.
If there is a thrombotic (clotting) episode, then the test has to be performed only after a period of 10 days.
Low Levels of Protein C and Protein S may indicate:

  • Serious infections
  • Kidney disorder
  • Liver disorder
  • HIV
  • Pregnancy
  • Chronic high blood pressure (hypertension)
  • Disseminated intravascular coagulation (DIC)
  • Various cancers
  • Vitamin K deficiency

High Protein C and Protein S levels are rarely of concern.
Note: Test results are NOT to be interpreted as a “stand-alone” test.
Results have to be interpreted after correlating with suitable clinical findings and additional supplemental tests/information.
Factors that may interfere with the results include surgery, oral contraceptives and chemotherapy.
Up to 15% of Caucasians carry a genetic mutation in a clotting factor that makes it resistant to Protein C’s effects, leading to similar symptoms as Protein C deficiency.
Tourniquet placement for extended periods of time can cause veins to pool with blood, altering Protein C and Protein S levels and affecting the test results.
Protein C and Protein S are being considered for use in therapy for individuals with hypercoagulation or Sepsis (whole-body inflammation).
LeanMachine advises finding a specialist experienced in these disorders, as these conditions can be easily mis-diagnosed.

More tests to follow here soon…

There are many more tests available, but the ones included here are among the most common.
To get accurate readings, be sure to follow instructions in preparing for tests.
We may be asked not to eat and to drink only water for anywhere from a few hours to 12 hours beforehand.
Follow these instructions, or results may be skewed, requiring additional tests or even unnecessary medications or procedures.
Remember that you have the right to ask questions!
No matter how busy the Doctor is, you are entitled to the information and explanation.
If the Doctor cannot provide it, ask the nurse. If you still cannot get a reasonable explanation, find another doctor!
This information is not meant to replace advice from the doctor, but to assist us to understand what the results mean, and allow us to ask the doctor any appropriate questions related to the test results, and understand the health, medication, treatment and prognosis implications.
And if the doctor says “All of your results are fine” then ask if any are “in range, but not optimal” and “what changes should I make to progress toward optimal results”.
Always get a printed copy of your results, and refer to this site to check if the doctor is really telling the truth, bluffing, or has no idea.

LeanMachine Supplements: Health Supplements, Body Building, Immunity, Diabetes, Cardiovascular, Weight Loss and more

 

Updated 6th September 2019, Copyright © 1999 Brenton Wight and BJ & HJ Wight trading as Lean Machine abn 55293601285Reproduction by any means absolutely prohibited, however links to this site are allowed from other web sites after permission granted, email sales@leanmachine.com.au for link requests.

 

Children used as poison detection devices

Analysis by Dr. Joseph Mercola Fact Checked July 17, 2019
environmental toxic exposures children

Story at-a-glance

  • Children are being used as guinea pigs and virtual poison detection devices. Oftentimes, it’s only after decades of toxic exposure that effects become apparent, at which point countless children have already paid the price with their health
  • Research has shown elevated fluoride exposure from drinking fluoridated water can contribute to a seven-point drop in a child’s IQ score, on average, and that’s just one of the thousands of chemicals children are exposed to on any given day
  • The U.S. Department of Housing and Urban Development estimates as many as 24 million U.S. residences built before 1978 still contain lead, a potent neurotoxin known to cause cognitive and behavioral deficits
  • Our food supply has become a notorious source for toxic exposures, ranging from herbicides and pesticides to antibiotics and food additives of questionable safety
  • Other common sources of toxic exposures include cosmetics and personal care products, furniture and other household items treated with flame-retardant chemicals, nonorganic clothing, toys, car seats, household cleaning products, sunscreen and nonorganic diapers and tampons

Children experience greater exposure to chemicals pound-for-pound than adults and have an immature and porous blood-brain barrier, which allows greater chemical exposures to reach their developing brain. As a result, early exposures can have devastating, lifelong ramifications.

For example, as noted in the scientific review,1 “Neurobehavioral Effects of Developmental Toxicity,” published in the March 2014 issue of The Lancet, elevated fluoride exposure from drinking fluoridated water can contribute to a seven-point drop in a child’s IQ score,2 on average, and that’s just one of the thousands of chemicals children are exposed to on any given day.

As reported by c&en in 2017, the U.S. Environmental Protection Agency lists more than 85,000 chemicals found in the marketplace,3 and the list keeps getting longer. Of those, a mere 1% have been tested for safety.4

The Lancet paper identified 11 industrial chemicals known to disrupt brain development and cause brain damage, neurological abnormalities, reduced IQ and aggressiveness in children and, according to the authors:5

“We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy.

Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse.”

Despite legislation, EPA weakens stance on toxic chemicals

Alas, to this day, a truly comprehensive global prevention strategy to protect children from toxic chemicals has yet to be implemented. Ditto for efforts to increase protections within the U.S. In 2010, then-U.S. Sen. Frank Lautenberg announced he would introduce a safer chemicals bill to amend the Toxic Substances Control Act (TSCA).6 As reported by Safer Chemicals at the time:7

“In opening remarks, Senator Frank Lautenberg said ‘the American public is a living breathing repository for chemical substances,’ and that as a result of inadequate testing of toxic chemicals, children have become test subjects.

‘Our children should not be used as guinea pigs,’ said Senator Lautenberg … Senator Lautenberg said his new bill would give the EPA the tools it needs to protect the public from unsafe chemicals by requiring testing of all chemicals in commerce and collecting data about harm to human health before chemicals can be added to consumer products.”

The Frank R. Lautenberg Chemical Safety for the 21st Century Act8 was signed into law June 22, 2016,9 thereby amending the TSCA. It requires the U.S. Environmental Protection Agency to perform risk-based chemical assessments and “evaluate existing chemicals with clear and enforceable deadlines.”

EPA is not protecting you and your family

Alas, by the time 2018 rolled around, it became clear the updated TSCA had accomplished nothing. As reported in an Environmental Defense Fund blog post, dated February 5, 2018:10

Last August, Scott Pruitt announced that the Environmental Protection Agency (EPA) would reverse course in its conduct of risk reviews of new chemicals under the reforms made in 2016 to the Toxic Substances Control Act (TSCA) by the Lautenberg Act. 

The changes will effectively return the program to its pre-Lautenberg state — under which few chemicals were subject to any conditions and even fewer to any testing requirements — or make it even weaker.”

The blog describes some of the political wranglings that led the EPA to reverse course under the influence of the American Chemistry Council. A December 19, 2017, article in The New York Times also reported on the rollback, stating:11

“The Environmental Protection Agency will indefinitely postpone bans on certain uses of three toxic chemicals found in consumer products, according to an update of the Trump administration’s regulatory plans.

Critics said the reversal demonstrated the agency’s increasing reluctance to use enforcement powers granted to it last year by Congress under the Toxic Substances Control Act.

E.P.A. Administrator Scott Pruitt is ‘blatantly ignoring Congress’s clear directive to the agency to better protect the health and safety of millions of Americans by more effectively regulating some of the most dangerous chemicals known to man,’ said Senator Tom Carper, Democrat of Delaware and the ranking minority member on the Senate Environment and Public Works committee.”

Advertisement

Get Up to 38% Off on Vtamin K2 and Vitamins D3 & K2

 

Neurotoxicity remains overlooked

Unfortunately, neurotoxicity tends to be largely overlooked because the effects are not as readily and visibly demonstrable as birth defects, for example. As noted in The Lancet paper:12

“David P Rall, former Director of the US National Institute of Environmental Health Sciences, once noted that ‘if thalidomide had caused a ten-point loss of intelligence quotient (IQ) instead of obvious birth defects of the limbs, it would probably still be on the market.’

Many industrial chemicals marketed at present probably cause IQ deficits of far fewer than ten points and have therefore eluded detection so far, but their combined effects could have enormous consequences.”

To put it bluntly, children are being used as guinea pigs and virtual poison detection devices. Oftentimes, it’s only after decades of exposure that the effects become apparent, at which point countless children have already paid the price with their health.

While some sources of toxic exposure may be readily apparent, a vast majority is not. Most parents don’t consider the possibility of children’s toys, nursing pillows or car seats being a source of continuous toxic exposure, for example. Just how pervasive are the toxic exposures to our children? Read on to find out.

Lead exposure still rampant

Most recently, a June 26, 2019, article13 in The Guardian reports that “hundreds of thousands of children in the U.S. remain at risk of exposure to lead, which causes cognitive and behavioral deficits.” Of the 31 states that have reported statistics on the percentage of children with elevated lead levels, Louisiana and Kentucky are among the worst.14

As noted in this article, many older homes still contain lead-based paint. Anna Almendrala tells the story of a young mother whose 2-year-old son developed the habit of gumming the window sills.

Initial blood testing revealed her son, who was already diagnosed with autism, had a lead level of 24 micrograms per one-tenth liter of blood, “almost five times higher than the reference point the US Centers for Disease Control and Prevention (CDC) uses to recommend a lead intervention,” Almendrala writes.15

Further testing revealed his blood level was 49 mcg, nearly 10 times higher than the recommended intervention threshold. Lead abatement inside the home revealed “lead hotspots on the door frames, window sills, and in her son’s bedroom closet.”

This story may sound like an anomaly, as lead-based paint was banned for use in housing in 1978.16 However, there are many older homes, and few families ever consider it might contain toxic remnants from years past.

The U.S. Department of Housing and Urban Development estimates as many as 24 million U.S. residences built before 1978 still contain lead hazards, and in June 2019 announced $330 million in grants will be distributed to clean up lead and other safety hazards in low-income housing communities.17 Almendrala writes:18

“When it comes to lead exposure in America, we still don’t have a clear picture of how many children are being exposed to the neurotoxin and where they are.

This leaves hundreds of thousands of children vulnerable to the dangers of lead, and compounds inequality in the form of cognitive and behavioral deficits that can hamper communities for generations. Experts say that it’s possible to eradicate lead from American infrastructure, but that we don’t prioritize it.

‘We are currently doing things backwards [by] using children’s blood as detectors of environmental contamination,’ said Dr Mona Hanna-Attisha, the pediatrician who famously uncovered elevated levels of lead in her pediatric patients and linked it to a new water source in Flint, Michigan. ‘The screening that needs to happen is in the environment before children are ever exposed.’”

Nonorganic food supplies daily dose of poison

Our food supply has also become a notorious source for toxic exposures, ranging from herbicides and pesticides to antibiotics and food additives of questionable safety (having never undergone safety testing). For a list of some of the most common food additives to avoid, see “What Chemical Cocktail Is in Your Food?

Tests have indeed confirmed that those who eat nonorganic foods as a general rule have far higher levels of toxins in their system.19 In 2015, Joseph E. Pizzorno, founding president of Bastyr University, told The Sydney Morning Herald that toxins appear to be a primary culprit in most chronic diseases, and that “Pesticides used on the food people eat are a better predictor of Type 2 diabetes than any other factor we have today.”20

David Bellinger, a professor of neurology at Harvard Medical School, has expressed similar concerns. According to his estimates, published in 2012, based on a population of 25.5 million American children, 16,899,488 IQ points have been lost due to exposure to organophosphate pesticides. Another 22,947,450 IQ points have been lost to lead exposure, and an additional 284,580 IQ points have been lost from methylmercury exposure.21,22

Of these, pesticides and methylmercury are both found in our diet (fish and seafood being the primary route of exposure for mercury23), while drinking water is an increasingly common source of lead.

In 2015, a report24 by the International Federation of Gynecology and Obstetrics25 warned that mounting chemical exposures now represent a major threat to human health and reproduction, stating that “prenatal exposure to chemicals and poor health outcomes are increasingly evident.”

The CHAMACOS Study26,27 is among those showing that very small amounts of pesticides may be harmful, in this case to children’s brains. It followed hundreds of pregnant women living in Salinas Valley, California, an agricultural mecca that has had up to a half-million pounds of organophosphates sprayed in the region per year.

The children were followed through age 12 to assess the impact the pesticides had on their development. It turns out the impact was quite dramatic. Mothers’ exposure to organophosphates during pregnancy was associated with:28

  • Shorter duration of pregnancy
  • Poorer neonatal reflexes
  • Lower IQ and poorer cognitive functioning in children
  • Increased risk of attention problems in children

Brenda Eskenazi, chief investigator of the CHAMACOS study, also noted that the effects of combined chemical exposures need further attention, as we still know very little about the synergistic effects of different chemicals.29

Endocrine disrupting chemicals are everywhere

In 2015, an Endocrine Society task force also issued its second scientific statement30 on endocrine-disrupting chemicals, noting that the health effects of hormone-disrupting chemicals are such that everyone needs to take proactive steps to avoid them. The statement also calls for improved safety testing to determine which chemicals may cause problems.

As far back as 2002, a paper31 in Environmental Science & Technology warned that endocrine disrupting 4-nonylphenols (NPs) “are ubiquitous in food,” but that’s certainly not the only source. As noted by the U.S. National Institute of Environmental Health Sciences:32

“A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and plasticizers such as bisphenol A. Endocrine disruptors may be found in many everyday products — including plastic bottles, metal food cans, detergents, flame retardants, food, toys, cosmetics, and pesticides.” 

One class of endocrine disrupting chemicals, per- and poly- fluorinated alkyl substances (PFAS),33 commonly used in a wide variety of products, including nonstick food wrappers and containers, are also pervasive in the U.S. food supply, and at levels far exceeding the advisory limit for PFOA and PFAS in drinking water (there are currently no limits in food).

The testing, conducted by the U.S. Food and Drug Administration, was performed in 2017 as part of its Total Diet Study34 and presented35 at the 2019 meeting of the Society of Environmental Toxicology and Chemistry. PBS reported the findings, noting:36

“The levels in nearly half of the meat and fish tested were double or more the only currently existing federal advisory level for any kind of … PFAS. The level in the chocolate cake was higher: more than 250 times the only federal guidelines, which are for some PFAS in drinking water …

PFOS, an older form of PFAS no longer made in the U.S., turned up at levels ranging from 134 parts per trillion to 865 parts per trillion in tilapia, chicken, turkey, beef, cod, salmon, shrimp, lamb, catfish and hot dogs. Prepared chocolate cake tested at 17,640 parts per trillion of a kind of PFAS called PFPeA.

The FDA presentation also included what appeared to be previously unreported findings of PFAS levels — one spiking over 1,000 parts per trillion — in leafy green vegetables grown within 10 miles (16 kilometers) of an unspecified eastern U.S. PFAS plant and sold at a farmer’s market.”

Other common sources of daily toxic exposures

In truth, to create a comprehensive list of common toxic exposures, let alone a listing of all potential ones, would require far more space than can be afforded here. That said, here’s a sampling of toxic exposure routes you may not have thought of before.

To protect yourself and your family — especially your little ones — consider addressing some of these exposures; replacing them with nontoxic alternatives. You can read more by following the hyperlinks to previous articles, where I also provide suggestions for replacements.

Cosmetics and personal care products Household cleaning products
Furniture, mattresses and upholstery containing flame-retardant chemicals Nonorganic diapers, menstrual pads and tampons
Nonorganic clothing Sunscreen
Toys Car seats
Sources and References